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Balance equations

Let B be a fluid occupying a compact and simply connected region C of a Euclidean point space E 3; at a
continuum level, its evolution is ruled by the field equations (neglecting heat sources):

E (1) ≡ ∂ρ

∂t
+∇ · (ρv) = 0,

E (2) ≡ ρ

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T = ρf,

E (3) ≡ ρ

(
∂ε

∂t
+ v · ∇ε

)
− T · ∇v +∇ · q = ρf · v,

where ρ is the mass density, v ≡ (v1, v2, v3) the velocity, ε the internal energy per unit mass, T the
symmetric Cauchy stress tensor, q the heat flux, and f the external body forces per unit mass.
This system is underdetermined and must be closed by constitutive equations for T and q in such a way
the local entropy production

σs = ρ

(
∂s

∂t
+ v · ∇s

)
+∇ · J ≥ 0

along any admissible thermodynamic process, s being the specific entropy, and J the entropy flux; s and
J are constitutive quantities, too. The second law of thermodynamics restricts the form of the
constitutive equations!
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Korteweg, 1901

D. J. Kortewega introduced a constitutive relation for the stress tensor T involving, in its elastic part, the
first and second order gradients of the mass density, in order to describe the cohesive forces due to
long–range interactions:

T =
(
−p + α1∆ρ+ α2|∇ρ|2

)
I+ α3∇ρ⊗∇ρ+ α4∇∇ρ,

wher p is the pressure, ρ the mass density, I the identity matrix and αi (i = 1, . . . , 4) are material
coefficients depending on ρ.

aD. J. Korteweg, Sur la forme qui prennent les équations du mouvement des fluids si l’on tient compte des forces
capillaires par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse
d’une variation continue de la densité, Archives Néerlandaises des sciences exactes et naturelles 6 Ser. II, 1–24, 1901.

A constitutive theory requires the choice of the state space variables, that can be the basic fields (local
constitutive laws) or the basic fields together with some of their gradients (non–local constitutive laws).
Here, we analyze the class of Korteweg–type materials described by the set of constitutive equations

F = F∗(ρ, ε,∇ρ,L,∇ε,∇∇ρ),

where F is an element of the set {T,q, s, J}, and L = sym (∇v).
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Exploitation of entropy–like inequality

The restrictions imposed by the second law of thermodynamics on constitutive equations can be derived
by means of the procedures:

1 Coleman1 and Noll, 1963;

2 Liu2, 1972;

3 Extended3 Liu, 2007.

For Korteweg fluids, the compatibility of non–local constitutive equations with the entropy principle has
been investigated by means of the Extended Liu procedure.a

aM. Gorgone and P. Rogolino, On the characterization of constitutive equations for third–grade viscous Korteweg fluids,
Phys. Fluids 33, 043107, 2021.

1B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch.
Ration. Mech. Anal. 13, 167–178, 1963.

2I–Shih Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal. 46,
131–148, 1972.

3V. A. Cimmelli, An extension of Liu procedure in weakly nonlocal thermodynamics, J. Math. Phys. 48, 113510, 2007.
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Extended Liu procedure for a viscous Korteweg fluid

Let us assume the state space spanned by

Z ≡ {ρ, ε,∇ρ,L,∇ε,∇∇ρ}.

By introducing Lagrange multipliers depending on the state space variables, the entropy inequality reads

ρ

(
∂s

∂t
+ v · ∇s

)
+∇ · J− λ(1)E (1) − λ(2) · E (2) − λ(3)E (3)

−Λ(1) · ∇E (1) − Λ(2) · ∇E (2) − Λ(3) · ∇E (3)−Θ(1) · ∇∇E (1) ≥ 0.

By expanding derivatives with the chain rule, we identify

X ≡ {ρ,t , vi,t , ε,t , ρ,it , vi,jt , ε,it , ρ,ijt , , vi,jkℓ, ε,ijk , ρ,ijkℓ} , highest derivatives,

Y ≡ {vi,jk , ε,ij , ρ,ijk} , higher derivatives,

and the entropy inequality can be written in compact form as

A · X+ YTBY + C · Y + D ≥ 0,

where A and C are vectors, B is a symmetric matrix, D is a scalar, all depending at most on field and
state space variables.
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Constitutive equations for viscous Korteweg fluids: assumptions

T =
(
−p+α1∆ρ+ α2|∇ρ|2

)
I+α3∇ρ⊗∇ρ+ α4∇∇ρ+ α5(∇ · v)I+ α6L,

q = q(1)∇ε+ q(2)∇ρ,

s = s0 + s1|∇ρ|2 + s2∇ρ · ∇ε+ s3|∇ε|2 + s4∇ · v + s5∆ρ,

where p, αi (i = 1, . . . , 6), q(j) (j = 1, 2) and sk (k = 0, . . . , 5) depend on (ρ, ε).

Constitutive equations for viscous Korteweg fluids: results and restrictions

T =

(
∂s0
∂ε

)−1 (
ρ2

∂s0
∂ρ

− 2ρ2s1∆ρ− d(ρ2s1)

dρ
|∇ρ|2

)
I+ 2ρs1

(
∂s0
∂ε

)−1

∇ρ⊗∇ρ+ α5(∇ · v)I+ α6L,

q = q(1)
∂ε

∂θ
∇θ,

s = s0(ρ, ε) + s1(ρ)|∇ρ|2, s1(ρ) ≤ 0,

J =
q

θ
+ 2ρ2s1(∇ · v)∇ρ, with

1

θ
=

∂s0(ρ, ε)

∂ε
,

q(1)
∂2s0
∂ρ∂ε

− q(2)
∂2s0
∂ε2

= 0, q(1) ≤ 0, q(2) ≥ 0, α5 ≥ 0, α6 ≥ 0.
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Phase boundaries at the equilibrium

The problem

The search for equilibrium configurations (θ = θ0 and v = 0) of a Korteweg fluid requires to solve the
conditions

∇ ·
((
−p + α1∆ρ+ α2|∇ρ|2

)
I+ α3∇ρ⊗∇ρ+ α4∇∇ρ

)
+ ρg = 0,

where g is the gravity acceleration, p ≡ p(ρ) and αi ≡ αi (ρ) (i = 1, . . . , 4) need to be evaluated at
constant temperature.
In our case, the equilibrium conditions read

∇ ·
(
θ0

(
ρ2

∂s0
∂ρ

− 2ρ2s1∆ρ− d(ρ2s1)

dρ
|∇ρ|2

)
I+ 2θ0ρs1∇ρ⊗∇ρ

)
+ ρg = 0,

where θ0 is the constant absolute temperature at the equilibrium.
This system is made by three PDEs where the only unkwnown is the mass density ρ(x , y , z), i.e., it is
overdetermined!
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Serrin, 1983

Using a general theorem proved in [Puccia, 1983], J. Serrinb established that, unless rather special
conditions on the coefficients entering the Cauchy stress tensor are satisfied, the only geometric phase
boundaries which are consistent with this system are either spherical, cylindrical, or planar!
In fact, in order to have the possibility to have more general geometric phase boundaries at equilibrium,
it is necessary that the constitutive quantities involved in the Cauchy stress tensor satisfy the following
condition:

α2
3 − α1

∂α3

∂ρ
+ 2α2α3 = 0.

aP. Pucci, An overdetermined system, Quart. Appl. Math. 41, 365–367, 1983.
bJ. Serrin, The form of interfacial surfaces in Korteweg’s theory of phase equilibria, Quart. Appl. Math. 41, 357–364,

1983.

Solution to Serrin condition

The recovered constitutive relations satisfy the Serrin condition, provided that

s0(ρ, ε) = s01(ρ) + s02(ε).

Also, from the thermodynamical restrictions, this result implies that ε = ε(θ), and the heat flux becomes

q = q(1)
dε

dθ
∇θ.
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Reduction of equilibrium conditions

Let the Korteweg fluid be in the coordinate system xyz with z axis directed along the ascending vertical.
The equilibrium condition reads:(

ρ2
ds01
dρ

− 2ρ2s1(ρxx + ρyy + ρzz)−
d(ρ2s1)

dρ
(ρ2x + ρ2y + ρ2z) + 2ρs1ρ

2
x

)
x

+ 2 (ρs1ρxρy )y + 2 (ρs1ρxρz)z = 0,

2 (ρs1ρxρy )x +

(
ρ2

ds01
dρ

− 2ρ2s1(ρxx + ρyy + ρzz)−
d(ρ2s1)

dρ
(ρ2x + ρ2y + ρ2z) + 2ρs1ρ

2
y

)
y

+ 2 (ρs1ρyρz)z = 0,

2 (ρs1ρxρz)x + 2 (ρs1ρyρz)y

+

(
ρ2

ds01
dρ

− 2ρ2s1(ρxx + ρyy + ρzz)−
d(ρ2s1)

dρ
(ρ2x + ρ2y + ρ2z) + 2ρs1ρ

2
z

)
z

− g

θ0
ρ = 0.

The idea is to reduce this overdetermined third order nonlinear system into a single equation!
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Reduction of equilibrium conditions

By solving the first equation with respect to
d2s01
dρ2

, we have

d2s01
dρ2

=

d2s1
dρ2

ρρx
(
ρ2x + ρ2y + ρ2z

)
+ 2

ds1
dρ

(
ρx

(
ρ(2ρxx + ρyy + ρzz) + ρ2y + ρ2z

)
+ ρ(ρxyρy + ρxzρz) + ρ3x

)
ρρx

+
2s1(ρ(ρxxx + ρxyy + ρxzz) + ρx(2ρxx + ρyy + ρzz) + ρxyρy + ρxzρz)

ρρx
− 2

ρ

ds01
dρ

. (∗)

Since
d2s01
dρ2

depend only on ρ, we need that the red quantity is a function depending on ρ.

This implies that

numerator of red quantity =
∂f (ρ)

∂x
,

where f (ρ) has to be determined.
By integrating with respect to x , we have

2ρs1(ρxx + ρyy + ρzz) +
d(ρs1)

dρ
(ρ2x + ρ2y + ρ2z) = f (ρ) + h(y , z), (∗∗)

where h(y , z) is an arbitrary integration function.
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Reduction of equilibrium conditions

It follows that
d2s01
dρ2

+
2

ρ

ds01
dρ

− 1

ρ

df

dρ
= 0,

providing

f (ρ) =
d(ρs01)

dρ
+ κ1, with κ1 constant.

Then, inserting into the equilibrium conditions the above relation, the constraints (∗) and (∗∗), and
differentiating (∗∗) in order to eliminate the third order partial derivatives, we obtain

∂h

∂y
= 0,

∂h

∂z
+

g

θ0
= 0,

i.e.,

h(y , z) = − g

θ0
z + κ2.
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3D Phase boundaries at the equilibrium

Solving equation for equilibrium conditions

Finally, we obtain the following condition

2ρs1∆ρ+
d(ρs1)

dρ
|∇ρ|2 − d(ρs01)

dρ
+

g

θ0
z − κ = 0,

where s01 ≡ s01(ρ), s1 ≡ s1(ρ), and κ is an arbitrary integration constant.
It represents the only second order scalar PDE to be solved in order to identically satisfy the equilibrium
conditions and so find the equilibrium configurations.
The obtained solving equation is analyzed distinguishing the following cases:

1 it reduces to a linear elliptic equation;

2 it reduces to a nonlinear elliptic equation, and a suitable boundary value problem of Dirichlet type is
investigated.
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2D Phase boundaries at the equilibrium

Assume that
s01 = κ1ρ

m, s1 = −κ2ρ
n,

with κi ∈ R+ (i = 1, 2), and m, n ∈ R; then, the solving equation becomes

2κ2ρ
n+1 (ρxx + ρyy ) + κ2(n + 1)ρn

(
ρ2x + ρ2y

)
+ κ1(m + 1)ρm − g

θ0
y + κ = 0.

Fixing in the plane xy the rectangular domain [0, ℓ1]× [0, ℓ2] (ℓ1, ℓ2 > 0), and introducing dimensionless
variables by the substitutions

x → ℓ1x , y → ℓ1y , ρ → R0ρ,

R0 being a reference density, we obtain

ρn+1 (ρxx + ρyy ) +
n + 1

2
ρn

(
ρ2x + ρ2y

)
+ α(m + 1)ρm + βy + γ = 0,

where
α =

κ1

2κ2
ℓ21R

m−n−2
0 , β = − g

2κ2θ0
ℓ31R

−n−2
0 , γ =

κ

2κ2
ℓ21R

−n−2
0 .

This is a nonlinear elliptic PDE that we study, with Dirichlet boundary conditions, in the domain

Ω = [0, 1]× [0, d ], d =
ℓ2
ℓ1
.
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2D Phase boundaries at the equilibrium: linear case

If m = 1 and n = −1, the condition for equilibrium reads

ρxx + ρyy + 2αρ+ βy + γ = 0,

that, using the transformation

ρ = ρ− βy + γ

2α
,

becomes
ρxx + ρyy + 2αρ = 0,

that is a Poisson equation for which many analytical solutions can be found, for instance in
separable form.

If m = −1 and n = −1, condition for equilibrium becomes

ρxx + ρyy + βy + γ = 0,

that, through the transformation

ρ = ρ− β

6
y3 − γ

2
y2,

reduces to the Laplace equation
ρxx + ρyy = 0.
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2D Phase boundaries at the equilibrium: nonlinear case

Let us now consider the following boundary value problem:

ρn+1 (ρxx + ρyy ) +
n + 1

2
ρn

(
ρ2x + ρ2y

)
+ α(m + 1)ρm + βy + γ = 0,

(x , y) ∈ [0, 1]× [0, d ],

ρ(x , 0) = ρ(x , d) = ρ0 − x2(1− x)2,

ρ(0, y) = ρ(1, y) =
ρ1 − ρ0

d
y + ρ0,

where ρ0 > ρ1 are suitable constants, that is numerically solved approximating first and second
derivatives by means of second–order and fourth–order finite difference formulas, respectively.
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Numerical solutions: linear case, n = −1 and m = 1
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Plot of the density ρ (left) and contour plot (right), with α = 1.0, β = −1.2, ρ0 = 1.4, ρ1 = 1.3, d = 3.
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Numerical solutions: linear case, n = −1 and m = −1
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Plot of the density ρ (left) and contour plot (right), with α = 1.0, β = −1.2, ρ0 = 1.4, ρ1 = 1.3, d = 3.
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Numerical solutions: nonlinear case

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

y

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

m = 1,
n = −2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

y

1.3

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

1.39

1.4

m = 1,
n = −3

Plot of the density ρ and contour plot, with α = 1.0, β = −1.2, γ = −1, ρ0 = 1.4, ρ1 = 1.3, d = 3.

Matteo Gorgone Equilibrium configurations in Korteweg fluids 18/21



Numerical solutions: nonlinear case
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Plot of the density ρ and contour plot, with α = 1.0, β = −1.2, γ = −1, ρ0 = 1.4, ρ1 = 1.3, d = 3.
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Conclusions

We recovered a single equation for the equilibrium!

The theoretical results contain some degrees of freedom and may serve as a basis for experimental
and/or numerical investigations.

We plan to investigate the equilibrium configurations of Korteweg fluids in three space dimensions
and using boundary conditions and parameters suggested by experiments.

Reference

M. Gorgone, F. Oliveri, A. Ricciardello and P. Rogolino, Two–dimensional equilibrium configurations in
Korteweg fluids, Theoretical and Applied Mechanics, 49, 111–122, 2022.
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