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Operatorial models
Consider an N–compartment/agent model S, and associate to each compartment (or agent)
an annihilation (aj), a creation (a†j), and a number (n̂j = a†jaj) fermionic operator. These
actors satisfy the CAR’s:

{ai, a†j} = δi,jI, {ai, aj} = {a†i , a
†
j} = 0.

The states of the system are vectors in the 2N–dimensional Hilbert space H constructed as the
linear span of the vectors

φn1,n2,...,nN
:= (a†1)

n1(a†2)
n2 · · · (a†N )nNφ0,

where nj ∈ {0, 1} for all j = 1, . . . , N , and φ0 is the vacuum of the theory, i.e., a vector
annihilated by all the operators aj .
The vectors φn1,...,nN

give an o.n. set of eigenstates of n̂j , say

n̂jφn1,...,nN
= njφn1,...,nN

, for all j = 1, . . . , N.

n̂j(ajφn1,...,nN
) =

{
(nj − 1)(ajφn1,...,nN

) if nj = 1
0 if nj = 0

,

n̂j(a
†
jφn1,...,nN

) =

{
(nj + 1)(ajφn1,...,nN

) if nj = 0
0 if nj = 1

.



Assign the dynamics

Let H be the time–independent self–adjoint Hamiltonian operator embedding the main
effects deriving from the interactions among the compartments/agents of the system.
For the dynamics of any operator X we use the Heisenberg representation,

X(t) = exp(iHt)X exp(−iHt),

or, equivalently,
dX(t)

dt
= i[H,X(t)].

Once defined a vector state Φ representing the initial configuration of the system, we compute
the mean values

nj(t) = ⟨Φ, n̂j(t)Φ⟩, j = 1, . . . , N,

⟨·, ·⟩ being the scalar product in H.
These mean values can be interpreted as a measure of the density of the compartments (or of
some feature of the agents) of the model.



Computational cost

From a computational point of view, once the Hamiltonian operator H has been assigned, in
general, the dynamics is obtained by computing, at each instant t

exp(iHt),

i.e., the exponential of a 2N × 2N matrix.
The same task can be achieved by solving the system of N4N complex differential equations,
say

ȧi(t) = i[H, ai(t)], i = 1, . . . , N,

where each ai is a 2N × 2N matrix.

For large N (even not too large!), the computational cost is a serious problem,
unless we restrict to quadratic Hamiltonians (the case we will face).



Quadratic Hamiltonian

The Hamiltonian we consider is
H = H0 +HI .

made of
the free part,

H0 =

N∑
j=1

ωja
†
jaj ,

where the real constants ωj can be interpreted as inertia parameters (the higher the
values, the less the tendency of the corresponding degrees of freedom to change);
the interaction part, HI , embedding competition and/or cooperation,

HI =

N∑
i,j=1,i<j

(
λi,j(a

†
iaj + a†jai) + µi,j(a

†
ia

†
j + ajai)

)
,

where the real constants λi,j and µi,j measure the strength of the interactions.



A comment about Interaction

HI =

N∑
i,j=1,i<j

(
λi,j(a

†
iaj + a†jai) + µi,j(a

†
ia

†
j + ajai)

)
,

The term a†iaj “creates” a particle for the i–th agent and “destroys” a particle for the
j–th agent; the adjoint term swaps the roles of the two agents:
the loss (gain) of an agent is the gain (loss) of the other agent.

The term a†ia
†
j creates a particle for both agents, and the adjoint part destroys a particle

for both agents:
the gain (loss) of an agent is the gain (loss) of the other agent.



Quadratic Hamiltonian with Prey-Predator Interaction

The computational cost is drastically reduced if the Hamiltonian is quadratic; for instance, if

H =
∑
i

ωia
†
iai +

∑
i<j

λij(a
†
iaj + a†jai),

introducing

A(t) =


a1(t)
a2(t)
. . .

aN (t)

 , Γ = i


−ω1 λ12 λ13 · · · λ1N

λ12 −ω2 λ23 · · · λ2N

· · · · · · · · · · · · · · ·
λ1N λ2N λ3N · · · −ωN

 ,

we may write

Ȧ(t) = ΓA(t) ⇒ A(t) = V (t)A(0), V (t) = exp(Γt)

If nℓ the initial density of the ℓ–th compartment, we can compute nℓ(t) by suitably using the
components of the matrix V (t). Therefore, the computational cost reduces to that needed for
computing the exponential of the N ×N matrix Γt.



The simplest example: 2 compartments/agents

Consider a system with 2 fermionic modes whose evolution is ruled by the Hamiltonian operator

H = ω1a
†
1a1 + ω2a

†
2a2 + λ(a†1a2 + a†2a1).

We are led to the differential equations

ȧ1 = i(−ω1a1 + λa2),

ȧ2 = i(−ω2a2 + λa1),

and the time evolution of the mean val-
ues of the number operators n1(t) and
n2(t) is periodic.
Motion integral:
[H, n̂1 + n̂2] = 0.

Trivial dynamics

ω1 = 0.7, ω2 = 0.5, λ = 0.2, n1(0) = 0.8,
n2(0) = 0.7.



3 Fermionic Modes

H =

3∑
k=1

ωka
†
kak + λ12(a

†
1a2 + a†2a1) + λ13(a

†
1a3 + a†3a1) + λ23(a

†
2a3 + a†3a2).

We have to consider the differential
equations

ȧ1 = i(−ω1a1 + λ12a2 + λ13a3),

ȧ2 = i(−ω2a2 + λ12a1 + λ23a3),

ȧ3 = i(−ω3a3 + λ13a1 + λ23a2),

and the time evolution of the mean val-
ues n1(t), n2(t) and n3(t) of the num-
ber operators is in general quasiperiodic.
Motion integral:
[H, n̂1 + n̂2 + n̂3] = 0.

Trivial dynamics

ω1 = 0.7, ω2 = 1/
√
2, ω3 = 0.3, λ12 = 0.1,

λ13 = 0.15, λ23 = 0.2, n1(0) = 0.4, n2(0) = 0.6,
n2(0) = 0.8.



More than quadratic Hamiltonians

The competitive interactions we can model with a quadratic Hamiltonian imply that the
dynamics we can deduce is at most quasiperiodic (the system admits also a first integral).

Taking a Hamiltonian operator containing contributions of order greater than two, the
Heisenberg equations of motion are nonlinear and we need to solve, for a fermionic model
involving N modes, N · 4N complex nonlinear equations (numerically).

Adding cooperative interactions doubles the number of the differential equations we have to
manage, (and first integrals are lost!).

Therefore, calculations are not readily implementable at all unless very low values of N are
considered.

The aim is to enrich the dynamics without rendering the problem computationally hard!



Modified descriptions of the dynamics

An extended version of the operatorial models consists in considering the evolution of system S
depending on its Hamiltonian, its initial conditions, and some external/internal action acting
repeatedly on the system itself or rather on the model: (H, ρ)-induced dynamics(1).

A rule is nothing else than a set of conditions mapping some input values into new ones.
It may be intended to modify repeatedly the values of the parameters, i.e., the model
is repeatedly adjusted according to the current state (or its variation) of the system.

The use of a rule enriches the description of the dynamics still with a quadratic Hamiltonian
by taking into account some effects occurring during the time evolution of the system.

The combined effect of H and ρ may produce the convergence of the system to some
asymptotic equilibria.

1Bagarello, Di Salvo, Gargano, Oliveri, Physica A, 2018.



(H, ρ)-induced dynamics: How to do.

Consider a self-adjoint time-independent quadratic Hamiltonian operator H(1). According
to Heisenberg view, in a time interval of length τ > 0:

compute the evolution of annihilation and creation operators, and, choosing an
initial condition for the mean values of the number operators, obtain their time
evolution (our observables);
according to the values of the observables at time τ , or to their variations in the
time interval [0, τ ], we modify some of the parameters involved in H(1);
we get a new Hamiltonian operator H(2), having the same functional form as
H(1), but (in general) with different values of (some of) the involved parameters;
follow the continuous evolution of the system under the action of this new
Hamiltonian for the next time interval of length τ . And so on.

No stop & go!
At each step, we do not restart the evolution of the system from a new initial condition, but
simply continue to follow the evolution with the only difference that for t ∈](k − 1)τ, kτ ] a new
Hamiltonian H(k) rules the process.



ρ as a map in the space of the parameters of H

Split the time interval [0, T ] into n = T/τ subintervals of length τ . In the k-th subinterval
](k − 1)τ, kτ ] consider an Hamiltonian H(k) ruling the dynamics. The global dynamics arises
from a sequence of Hamiltonian operators:

H(1) τ−→ H(2) τ−→ H(3) τ−→ . . .
τ−→ H(n).

Follow the dynamics of the observables Xi (i = 1, . . . , N) governed by H(k) in a time
interval of length τ > 0,

Xi(t) = exp(iH(k)t)Xi exp(−iH(k)t).

Change the values of the parameters on the basis of the mean values xi(τ) (i = 1, . . . , N)
so obtaining H(k+1).
Continue the evolution as ruled by H(k+1), and so on.
The parameters entering the model are stepwise (in time) constant.
Often, a sort of synchronization of the oscillations is reached, and the evolution may
admit asymptotic equilibrium states.

The global evolution is obtained by glueing the local evolutions.
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(H, ρ)–induced dynamics – Example

H = ω1a
†
1a1 + ω2a

†
2a2 + λ(a†1a2 + a†2a1),

ω1 = 0.4, ω2 = 0.5, λ = 0.2, n1(0) = 0.7, n2(0) = 0.6.

The rule consists in the replacements at times kτ (k ∈ N){
ω1 7→ ω1(1 + δ

(k)
1 ), δ

(k)
1 = n1(kτ)− n1((k − 1)τ),

ω2 7→ ω2(1 + δ
(k)
2 ), δ

(k)
2 = n2(kτ)− n2((k − 1)τ).

The rule modify only the inertia of the compartments/agents! If the mean value of a number
operator increases in a subinterval, then its inertia increases.
Because of the existence of the first integral, ω1 and ω2 undergo opposite variations (one is
creasing and the other one decreasing).
In some sense, the actors of the system change their attitudes as a consequence of the
evolution of the system.



2 modes - Some plots

No rule τ = 1

τ = 2 τ = 4



3 modes - Some plots

No rule τ = 1

τ = 2 τ = 4



Quadratic Hamiltonians: competition and cooperation

H =

N∑
j=1

ωj a
†
j aj +

∑
1≤j<k≤N

λj,k

(
aj a

†
k + ak a

†
j

)
+

∑
1≤j<k≤N

µj,k

(
a†j a

†
k + ak aj

)
,

The dynamical equations we have to solve:

ȧj = i

−ωjaj +
∑

1≤ℓ<j

λℓ,jaℓ +
∑

j<k≤N

λj,kak +
∑

1≤ℓ<j

µℓ,ja
†
ℓ −

∑
j<k≤N

µj,ka
†
k

 ,

ȧ†j = i

ωja
†
j −

∑
1≤ℓ<j

λℓ,ja
†
ℓ −

∑
j<k≤N

λj,ka
†
k −

∑
1≤ℓ<j

µℓ,jaℓ +
∑

j<k≤N

µj,kak

 .



Quadratic Hamiltonians: competition and cooperation

Setting A =
(
a1, . . . , aN , a†1, . . . , a

†
N

)T
, and defining the square matrix of order 2N

Γ =

[
Γ0 Γ1

−Γ1 −Γ0

]
,

where the symmetric block Γ0 and the antisymmetric block Γ1 are

Γ0 =


−ω1 λ1,2 · · · · · · λ1,N

λ1,2 −ω2 λ2,3 · · · λ2,N

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
λ1,N , λ2,N · · · λN−1,N −ωN

 ,

Γ1 =


0 −µ1,2 · · · · · · −µ1,N

µ1,2 0 −µ2,3 · · · −µ2,N

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
µ1,N , µ2,N · · · −µN−1,N 0

 ,



The evolutions equations read
dA

dt
= iΓA, A(0) = A0,

and we have a formal solution

A(t) = B(t)A0, B(t) = exp (iΓt) .

Now, let us define the vector (not a pure state!)

φ =
N∑

k=1

√
n0
keℓ, ℓ = 2k−1 + 1,

i.e., fix the initial condition. If Bj,k is the generic entry of matrix B(t), we have

a†
k(t) =

N∑
j=1

(
Bk+N,ja

0
j +Bk+N,j+Na0

j
†
)
,

ak(t) =

N∑
j=1

(
Bk,ja

0
j +Bk,j+Na0

j
†
)
,

whereupon the formula
nk(t) =

〈
φ, a†

k(t)ak(t)φ
〉
.



Mean values of the number operators

Using the CARs, we get the mean values of the number operators at time t:

nk(t) =

N∑
i=1

φ2
i

N∑
ℓ=1

Bk,f(ℓ,k)Bk+N,g(ℓ,k)

+

N−1∑
i=1

N∑
j=i+1

φiφj (Bk,iBk+N,j+N +Bk,jBk+N,i+N

−Bk,i+NBk+N,j −Bk,j+NBk+N,i) ,

where

f(ℓ, i) =

{
i if i = ℓ,
i+N if i ̸= ℓ,

g(ℓ, i) =

{
i+N if i = ℓ,
i if i ̸= ℓ.



Toy Model with 7 interacting agents2
Consider a network of some interacting agents among which both cooperative and competitive
effects occur (the mean values of the number operators measure the wealth of the
agents).

H =

7∑
k=1

ωka
†
kak +

6∑
k=1

7∑
ℓ=k+1

(
λkℓ(aka

†
ℓ + aℓa

†
k) + µkℓ(a

†
ka

†
ℓ + aℓak)

)
.

The system S consists of
a subsystem (a1, a2, a3) interacting
in a competitive way;
a subsystem (a4, a5, a6) interacting
in a cooperative way;
an opportunist agent (a4)
competing with a2 and cooperating
with a6.

2Gorgone, Inferrera, Oliveri, IJTP, 2023.



Toy Model with 7 interacting agents
For the considered model, the evolution equations read:

ȧ1 = i (−ω1a1 + λ12a2 + λ13a3) ,

ȧ2 = i (−ω2a2 + λ12a1 + λ23a3 + λ24a4) ,

ȧ3 = i (−ω3a3 + λ13a1 + λ23a2) ,

ȧ4 = i
(
−ω4a4 + λ24a2 − µ46a

†
6

)
,

ȧ5 = i
(
−ω5a5 − µ56a

†
6 − µ57a

†
7

)
,

ȧ6 = i
(
−ω6a6 + µ46a

†
4 + µ56a

†
5 − µ67a

†
7

)
,

ȧ7 = i
(
−ω7a7 + µ57a

†
5 + µ67a

†
6

)
,

together with their adjoints.

Parameters used in the numerical simulations:

ω1 = 0.5, ω2 = 0.55, ω3 = 0.6, ω4 = 0.3, ω5 = 0.65, ω6 = 0.7, ω7 = 0.75,

λ12 = 0.1, λ13 = 0.1, λ23 = 0.1, λ24 = 0.01,

µ46 = 0.01, µ56 = 0.1, µ57 = 0.1, µ67 = 0.1.



Heisenberg dynamics with no rule



Insert the rules

Fix τ and divide the time interval [0, T ], where we study the evolution of the
system, in subintervals of length τ .
Set the initial value of the inertia parameters:

ω1 = 0.5, ω2 = 0.55, ω3 = 0.6, ω4 = 0.3,

ω5 = 0.65, ω6 = 0.7, ω7 = 0.75.

After the time τ has elapsed, change the inertia parameters with the following rule:

ωj 7→ ωj(1 + δ
(k)
j ),

where
δ
(k)
j = nj(kτ)− nj((k − 1)τ), j = 1, . . . , 7.

The dynamics of the system drastically changes!



Heisenberg dynamics with rule (τ = 1)



Heisenberg dynamics with rule (τ = 2)



Heisenberg dynamics with rule (τ = 4)



Heisenberg dynamics with rule (τ = 8)



Comparison among the different cases

τ = 1 (top left), τ = 2 (top right), τ = 4 (bottom left), τ = 8 (bottom right).



A little bit more complex model3

Let us consider a system made by N agents; each agent is located in a cell of a
one–dimensional torus partitioned in N cells, so that the cell 1 is adjacent to the cell N . The
distance between adjacent cells is 1, whereupon the maximum distance between the cells is
dmax = ⌊N/2⌋.
Let us choose randomly:

N1 agents (the competitive subgroup) interacting each other with a competitive
mechanism;
N2 agents (the cooperative subgroup) interacting each other with a cooperative
mechanism;
N3 = N −N1 −N2 opportunist agents, i.e., each opportunist agent has a competitive
interaction with an agent of the competitive subgroup, and a cooperative interaction with
an agent of the cooperative subgroup; moreover, the opportunist agents compete each
other.

Each agent has an inertia parameter randomly chosen in the range between 0.5 and 0.7.

3Gorgone, Inferrera, Oliveri, IJTP, 2023



A little bit more complex model

When two agents are interacting in some way, the competition parameter λj,k decreases with
the distance d(j, k) between the cells j and k; on the contrary, the cooperation parameter µj,k

increases with d(j, k):
λj,k = λ (1− tanh (d(j, k)− dmax/2)) ,
µj,k = µ (1 + tanh (d(j, k)− dmax/2)) ,

where λ = µ = 0.1:



Numerical results

The numerical results are obtained either using the standard Heisenberg view or the
(H, ρ)–induced dynamics approach.

In all the simulations all the agents start with the same initial amount of wealth, say 1/N ;
moreover, N1 = N2 (same number of cooperative and competitive agents), and five different
values of N3 (the number of opportunist agents) are considered.

To fix the rule, let us define

δ
(k)
j = nj(kτ)− nj((k − 1)τ), k = 1, . . . , N,

δ(k) = max
{∣∣∣δ(k)j

∣∣∣ , j = 1, . . . , N
}
;

then, at times kτ the inertia parameters change according to the rule:

ωj 7→ ωj

(
1 +

δ
(k)
j

δ(k)

)
, j = 1, . . . , N.



Cooperative and Competitive subgroups contain 45 agents and the Opportunist subgroup 10 agents; no rule,
(H, ρ)–induced dynamics with τ = 1, τ = 2 and τ = 4.



Cooperative and Competitive subgroups contain 42 agents and the Opportunist subgroup 16 agents; no rule,
(H, ρ)–induced dynamics with τ = 1, τ = 2 and τ = 4.



Cooperative and Competitive subgroups contain 40 agents and the Opportunist subgroup 20 agents; no rule,
(H, ρ)–induced dynamics with τ = 1, τ = 2 and τ = 4.



Cooperative and Competitive subgroups contain 33 agents and the Opportunist subgroup 34 agents; no rule,
(H, ρ)–induced dynamics with τ = 1, τ = 2 and τ = 4.



Cooperative and Competitive subgroups contain 25 agents and the Opportunist subgroup 50 agents; no rule,
(H, ρ)–induced dynamics with τ = 1, τ = 2 and τ = 4.



Comments

Without the rule, the evolution is trivial and a never ending oscillatory outcome is
obtained.
With the (H, ρ)–induced dynamics approach, cooperation gives better results in terms of
wealth:

– Cooperative subgroup, as time increases, obtains an amount of average wealth always
greater than that of the purely competitive subgroup and often greater than that of
the opportunist subgroup.

– For a low number of opportunist agents, the time needed for having an average
wealth of the cooperative subsystem greater than that of the opportunist subsystem
increases with τ : a lower frequency of adjusting the attitudes of the agents makes a
better performance for the opportunist agents for longer times.

– When the number of opportunist agents increases, their average wealth definitely
becomes less than that of the cooperative subsystem, regardless the choice of τ ; also,
the average wealth of opportunist subsystem is similar to that of competitive
subsystem.



Comments

Opportunist behavior may be for some time successful if the number of opportunist
agents is not too high, but as time increases their success vanishes.

In the long run opportunist agents are losers, at least in this model.

In real life, often not!

“You can fool all the people some of the time, and some of the people all the time, but
you cannot fool all the people all the time.”
Abraham Lincoln.
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Rules modifying inertia and nature of interactions

Let us consider a system made by N agents; each agent is located in a cell of a
one–dimensional torus partitioned in N cells.The maximum distance between the cells is
dmax = ⌊N/2⌋.
The agents are partitioned in three subgroups:

N1 agents with inertia parameters randomly chosen in the interval [0.2, 0.4];
N2 agents with inertia parameters randomly chosen in the interval [0.4, 0.6];
N3 agents with inertia parameters randomly chosen in the interval [0.6, 0.8].

As far as the interactions are concerned:
Ncomp couples of agents (randomly chosen) interact with a competition mechanism;
Ncoop couples of agents (randomly chosen) interact with a cooperation mechanism.

λj,k = λ (1− tanh (d(j, k)− dmax/2)) ,
µj,k = µ (1 + tanh (d(j, k)− dmax/2)) ,

where λ = µ = 0.1 (so that λj,k, µj,k ∈ [0, 0.2].



Rules modifying inertia and nature of the interactions
Fix τ for updating the parameters.
Compute in each subinterval of length τ

δ
(k)
i = ni(kτ)− ni((k − 1)τ), i = 1, . . . , N.

At times kτ , update the inertia parameters according to

ωi 7→ ωi(1 + δ
(k)
i ),

and update interaction parameters (weak attitude to cooperate) according to:

µi,j 7→

 min
(
µi,j + δ

(k)
i + δ

(k)
j , µmax

)
if δ

(k)
i δ

(k)
j > 0 and δ

(k)
i + δ

(k)
j > 0

max
(
µi,j + δ

(k)
i + δ

(k)
j , µmin

)
if δ

(k)
i < 0 and δ

(k)
j < 0

λi,j 7→

 max
(
λi,j − δ

(k)
i − δ

(k)
j , λmin

)
if δ

(k)
i > 0 and δ

(k)
j > 0

min
(
λi,j − δ

(k)
i − δ

(k)
j , λmax

)
if δ

(k)
i < 0 and δ

(k)
j < 0

.

In the case of strong attitude to cooperate, besides previous rules, it is also:

µi,j 7→ min
(
µi,j + (δ

(k)
i + δ

(k)
j )/2, µmax

)
if (δ(k)i + δ

(k)
j > 0).



Rules modifying inertia and nature of the interactions

The agents of the network can be classified as competitive, cooperative or neutral. Com-
pute

ti =

N∑
j=1

(λi,j − µi,j) ;

then
the i–th agent is cooperative if ti < 0;
the i–th agent is neutral if ti = 0;
the i–th agent is competitive if ti > 0.

The distribution of wealth ni(t) among the agents could be analyzed by means of Gini
Index:

G(t) =

∑N
i,j=1 |ni(t)− nj(t)|
2N
∑N

i=1 ni(t)
.

belonging to the interval [0, 1]. A value close to 0 corresponds to an almost uniform wealth
distribution, whereas a value close to 1 to a wealth distribution with strong inequalities.



Rules modifying inertia and nature of the interactions
Only competing agents initially: weak attitude to cooperate.



Rules modifying inertia and nature of the interactions
Only competing agents initially: strong attitude to cooperate.



Rules modifying inertia and nature of the interactions
Same initial number of competing and cooperating couples: weak attitude to
cooperate.



Rules modifying inertia and nature of the interactions
Same initial number of competing and cooperating couples: strong attitude to
cooperate.



Rules modifying inertia and nature of the interactions



Thank you for the attention.


