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A b s t r a c t - - W e  develop a one-dimensional moving-mesh method for hyperbolic systems of conser- 
vation laws. This method is based on the high-resolution finite-volume "wave-propagation method", 
implemented in the CLAWPACK software package. A modified system of conservation laws is solved 
on a fixed, uniform computational grid, with a grid mapping function computed simultaneously in 
such a way that in physical space certain features are tracked by cell interfaces. The method is tested 
on a shock-tube problem with multiple reflections where the contact discontinuity is tracked, and 
also on two multifluid problems where the interface between two distinct gases is tracked. One is a 
standard test problem and the other also involves a moving piston whose motion is also tracked by 
the moving mesh. (~) 2003 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - M o v i n g - m e s h  methods, Finite-volume methods, Hyperbolic conservation laws, Inter- 
face problems. 

1. I N T R O D U C T I O N  

We study high-resolution finite-volume methods for the one-dimensional conservation law 

qt + f (q ) z  = ~ (x ,q )  (1) 

on a moving grid, where the interface x~ between grid cells varies with time t~. Figure 1 shows a 
typical moving grid over one time step. We show how the wave-propagation algorithms developed 
in [1] and implemented in the CLAWPACK software [2] can be modified to handle moving grids. 
and consider applications to gas dynamics in a tube with moving-piston boundary conditions and 
also a moving interface between two gases. 

With a finite volume method, our approximation consists of cell averages 

1 f~ x,~+l '~ q(x, t~) dx, 
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xi xi+ 1 

x? X~+l 
Figure 1. Grid points in the moving-mesh method. The conservation law is integrated 
over a typical grid cell in space-time, shown shaded. The cell interfaces move with 
velocities x~ and x~+l, respectively. 

where Ax~ = xni+l - xin and the grid is illustrated in Figure 1. We assume the motion of x~ has 

constant speed 
• n xn ' b l  n -- X i 

x~ = At 

over each time step Its, t,~+l]. By integrating the conservation law over the shaded trapezoid in 
Figure 1, we obtain an expression for the cell average Q~+I at time tn+l in terms of Q~ and the 
fluxes across the rays x = x~ + :~ ( t  - tn) and x = xn~+l +~'~+1( t - tn) bounding the trapezoid on 
the left and right. A numerical method is obtained by approximating the fluxes on the basis of 
nearby cell averages. 

Harten and Hyman [3] show how to extend Godunov's method and Roe's method (based on 
approximate Riemann solvers) to this context. They also proposed a method for moving the 
grid (i.e., choosing the speed ~ in each step) to improve the resolution of shocks and contact 
discontinuities in gas dynamics problems. The Godunov and Roe methods are only first-order 
accurate. Here we show how the high-resolution algorithms implemented in CLAWPACK can be 
easily extended to the moving grid. In one space dimension, this algorithm is very similar to other 
flux-limiter or slope-limiter methods that  have been proposed in the literature. The extension to 
moving grids is made with a simple modification of the Riemann solver and appropriate use of 
the "capacity function" discussed in [1]. 

This algorithm could then be combined with the moving-mesh algorithm of Harten and Hyman. 
Rather than pursuing this, we instead study three specific problems where the mesh motion is 
chosen to explicitly track moving interfaces and/or boundaries. In particular, we study a gas 
in a tube bounded by a solid wall at x = 0 and a moving piston at x = L( t ) .  We could solve 
this classical piston problem using N grid cells in [0, L(t)] with cell interfaces x~ = (i - 1)Axe, 
where Ax'~ = L ( t n ) / N .  To make the problem more interesting, we also assume the tube contains 
two different gases separated by a contact discontinuity at some point I ( t )  < L( t ) .  In this case, 
we can choose the grid motion so that  the gas interface is always at a cell interface, allowing 
sharp resolution and simple solution of the two-fluid Riemann problem at the interface. 

By including a source term in (1), we can also solve spherically symmetric problems in three 
space dimensions, where x now represents distance from the origin. In particular, the two-fluid 
case could potentially be extended to model a spherically-symmetric bubble. A gas-filled bubble 
in liquid might be modeled by using, for example, the Tait equation of state in the outer fluid 
(for x > I ( t ) ) .  The study of gas bubbles is of interest in a variety of applications, including 
sonoluminescence, in which sound waves in the liquid cause such violent contraction of small gas 
bubbles that  light is emitted via some mechanism that  is not yet understood. Focusing shock 
waves within the bubble may be of importance and there is interest in modeling such dynamics [4]. 
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Another possible application is to nonlinear acoustic or elastic waves in a heterogeneous solid, 
where the grid motion could follow deformations of an elastic body to keep the material prop- 
erties of each grid cell fixed. CLAWPACK has been shown to work well on linear [5] or weakly 
nonlinear [6] problems with rapidly varying material properties, where the variation of coefficients 
with x is held fixed independent of the solution. The moving-mesh method developed here should 
allow these studies to be carried further to fully nonlinear problems where the movement of r~he 
material is significant. 

In this paper, we concentrate on describing the moving mesh and interface tracking algorithm, 
which may be of interest in other applications as well, and only consider the case of a single 
gamma-law gas or two ideal gases with different values of 7. Several examples are presented in 
Section 6. 

Many other moving-mesh methods for hyperbolic problems have been proposed in the litera- 
ture. Some recent references include [7-12]. 

The approach proposed here has the advantage that  it is easily implemented using the CLAW- 
PACK software package, not only for the gas dynamics problems used here as examples, but 
for a wide variety of other problems where CLAWPACK applies. A sample code is available 
from the CLAWPACK web page [2] which can be used as a template for other applications. See 
http ://www. amath, washington, edu/,-,r j i/clawpack/movingmesh. 

2. T H E  M O D I F I E D  A L G O R I T H M S  

Our description of the algorithms follows the notation of [1]. Let 0 _< ~ _< 1 be the "computa- 
tional domain" in which we have a fixed uniform grid with ~i = (i - 1)A~ for i = 1, 2 , . . . ,  N 4 1, 
with A~ = 1 IN .  We also have a grid mapping X(~, t) with the property that  

z? = x ( f , ,  t,,). 

Computationally, we will assume that  the time derivative Xt  (~ ,  t) is constant over t~ < t < t~+l, 
and this is what we call xp, but before discussing the computational algorithm, it is illuminating 
to consider the transformation of the differential equation (1) to an equation in (~, t) using a 
smooth mapping function X(~, t). 

Let ~(~, t) - q ( X ( G  t), t) and ~(~, ~) = %b(X((, t), q). Then we compute 

f ((t)~ = f ( q ) z X ~  ==~ f ( q ) z  - f (q)~ x~' 

qt = qt + Xt (~ ,  t)q~ = qt + Xtq~ ===~ qt = qt - - -  
X~ X~ 

Inserting these in equation (1) and multiplying by X~ gives 

Xcqt + f (q)f - Xt~¢ = Xf~.  (2) 

We can put the left-hand side in conservation form by noting that  

x~4,  = (x~q), - x~,q, 

and so (2) becomes 

(X(q)t + [f (4) - Xt(7]~ : X ( ~ .  (3) 

We could now proceed by discretizing either (2) or (3) over the uniform computational grid in (. 
However, to insure conservation, we will instead derive the method based on integration over the 
trapezoid in Figure 1 and then see that  this gives a consistent approximation to these equations. 
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We first consider the homogeneous case ¢ -= 0 and the use of Godunov's method with the exact 
Riemann solver. We approximate q by a piecewise constant function at time tn and can then 
compute the exact update based on the values Q~ which are defined to be the state obtained 
in the Riemann problem between Q n and Q~ along the ray (x - x~)/(t - t~) = ~ between 
the grid cells. Integrating the conservation law over the trapezoid as in [3] gives the following 
expression: 

_ n + l  f ~ n + l  n n * A ~  w~ =Ax~Q~ - A t [ ( f ( Q ~ + ~ ) - ~  ~* ~ '~ * i + l ' ~ i + l /  -- ( f  (Q~) - Xi Qi)]  • (4)  

Define n~ = Ax~/A~. Then replacing Ax~ by a~A~ and dividing by A~ in (4) gives 

/, n + l , , - ~ n + l  A t  * • n * 

, = - [ ( / ( Q , + 0  - - ( / ( Q * )  - i - ~ i / j  ' 

Note that  this gives a consistent approximation to (3) (when ¢ = 0) since 

(5) 

n? ,.~ X~(~i,t,) and ~? ,.~ Xt(~,,tn). 

The description of wave propagation algorithms in [1] includes a discussion of how to handle gen- 
eral capacity functions n(~) in the equation ~(~)qt + f(q)¢ = 0, in the case when ~ is independent 
of time. The general idea of ~ is that  ~iA~ represents the "capacity" of the ith cell, either due 
to variable grid spacing as here, or to other physical effects such as variable porosity in a porous 
media problem. 

Now n varies with t as well. As discussed in [1], we would like to write the algorithm in a form 
that  achieves two goMs.. 

n n 1. ~ ni Qi should be conserved with n. 
2. Constant states q should be preserved, even when nq is varying, since in this case qz = 0 

implies f(q)x =- O. 
When n~ is independent of n, this can be achieved by dividing (5) by ni and incorporating n~ 
properly in the correction terms for the high-resolution method discussed below. When the grid 
is moving and ~ varies with n, we must first rewrite (5) using the observation 

n n . n W l s - ' ~ n  A t  " n . n  n ni  Q ,  = ~ ~ ,  - h - ~ ( ~ i + l  - z i  ) Q ~ ,  

which follows from the fact that  x i-n+1 = x~ + At x~.'n Using this in (5) and rearranging gives 

t n + l f ~ n + l  . n + l ~ , ~ n  A t  , , . n  , ~¢, =% w~ - ~ - ~  [ ( f ( Q , + I ) - 2 ~ + I ( Q ~ + I - Q ~ ) ) - ( f ( Q ; ) - x ~  (Q*-Q~))] .  (6) 

Note that  this can be viewed as a discretization of equation (2) when ¢ = 0. 
When a source term ¢(x) is present, we must include an approximation to the integral over 

the trapezoid, with appropriate weighting, 

/ t ,+l  1 fx~+~(t) ] ~(x,t) ¢t , ,  x~+l(t)--xi(t) J=,(t) ¢(x,q) dx dt 

a~ At¢(Q~) ,  or a fractional step in update (6). This can be approximated to first order by n+l n 
method such as the Strang splitting implemented in CLAWPACK could be used to incorporate 
this term. 

Here, we are assuming that  n is nonzero everywhere. This ensures a nonsingular grid map- 
ping X(~, t), and hence, a one-to-one and onto mapping between the computational and the 
physical domain. A similar grid mapping, but singular at the initial time, was used in [13] to 
study a shock propagation in a thin elastic rod. 
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3. I M P L E M E N T A T I O N  

The CLAWPACK software can be applied directly to implement (6) if we simply modify the 

code to use n~+l as the capacity function in step n and modify the s tandard Riemann solver to 
return modified flux differences tha t  incorporate the grid motion. 

The s tandard Riemann solver (for the case ~ = 0) returns flux differences (see [1]) 

A-Aq~ = f (Q~) - f (Q~-I) ,  

A + A q  i = f (Qi) _ f (Q; ) ,  (7) 

where Q~" is the solution along (x - x~ ) / ( t  - t,~) = 0 in this case. The update  formula for 
Godunov 's  method is 

~iO'~+i = Q~n _ __t~A~At (A+Aqi  + A-Aq~+i )  . (8) 

When ~n ~ 0, we simply modify this routine so that  Q* is the solution along the ray ( x -  x~) / ( t  

tn) = x~ and so that  we return 

A - A q ,  = f (Q*) - f ( Q ~ - I )  - x~ (Q; - Q , - I ) ,  
(9) 

A+Aq~ = f (Qi )  - f (Q~) - $7 (Qi - Q~). 

The update  formula (8) is unchanged except tha t  a~ now varies in time and we use g ~ + l  
If the Roe approximate Riemann solver is used, then the solution to the Riemann problem is 

approximated by solving some linear system qt + Aiqz = 0 with A c R rnxm for a system of m 

equations. This yields a decomposition of AQi  = Qi - Qi-1 into waves )4; p and speeds X~ (for 
p = l ,  , 2 , . . . , m )  s o t h a t  

Q~ - Q~_~ = ~ w ~  and f ( Q O  - f (Q~-~)  = ~ A~W~. 
p p 

For the case $~ = 0, the flux differences are then 

A-~q, = ~ (g ) -  w 5  

' (10) 
.~+Aq, = ~ (g)+ w5 

P 

where A- = min(A, 0) and A+ = max(A, 0). These are very easily generalized to the case x~ ¢ 0. 
The waves and speeds are calculated as before and we then set 

WAq, = ~ (g - x~)- w5 
P (11) 

A+Aq~ = ~ ( g  - ~+ w~ i ~  " ' i '  

P 

If an entropy fix is included in the definition of .A - Aq  and A+Aq,  then we must be sure to use. 
the shifted wave speeds also in this calculation, as discussed in [3]. 

4. H I G H - R E S O L U T I O N  M E T H O D S  

High-resolution methods are implemented in CLAWPACK by adding an additional term to 
the update, obtaining 

i = Q i  n + l ~ , ~  . n + l A ~ -  F i + l  - -  ' 
/'~i ~_x~ r~ i ~..~q 
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where 

F~ n = ~ 1 ..n+l ^ #  
p----1 t~i--1/2a'~ 

Here WP is a limited version of )d)~ (see [1]) and 

"n 

is again the shifted wave speed if the grid is moving. The average value ~i-1/2 = (1/2)(t~_1 + ~ )  
is used since ~_1/2A~ models the distance between cell centers. This should more properly 
be evaluated at time tn rather than tn+l, but if the mesh is varying smoothly this affects only 
higher-order terms and the above approach arises naturally since we use ~ + 1  as the capacity 
function in the n th  step. 

5. S H O C K  T U B E  P R O B L E M S  

In Example 3 of Section 6, we consider a piston moving into a tube filled with two different 
gases separated by an interface. The moving-mesh method is used to maintain a fixed number 
of grid cells in the tube of varying length, and also to avoid mixing of the two gases by tracking 
the contact surface with a grid line. 

First, however, we consider a simpler shock tube problem with a single gas in a fixed length 
tube, with the mesh chosen to follow the contact discontinuity. This is a useful test problem since 
it leads to a highly distorted mesh but in a situation where a uniform mesh calculation can also be 
performed for comparison. We will see that  the wave-propagation method performs well on the 
moving mesh, even when there is a large jump in mesh spacing across the contact discontinuity. 
Moreover, in Example 2, we consider two standard test problems for multifluid methods. In both 
cases, the reported numerical results demonstrate that  the proposed moving-mesh method can 
be applied also to the interaction of strong shock waves with contact discontinuities. 

In all of these test problems, we use the Euler equations of gas dynamics, 

qt + f(q)z = 0, 

where 

q = and f(q) = P u2 + P 
[u(E + p) 

with the ideal gas equation of state 

These equations are solved in the domains 0 < x < I(t) and I(t) 
represents the location of a contact discontinuity between two initially 
is the location of the right boundary. In Examples 1 and 2, L(t) - 1 
tracks the motion of the moving piston. In Example 1, the two gases 
everywhere. In Example 2, two different gases are involved, namely, 
air/R22 in Case 2. In Example 3, there are two different gases with 
while V = 2.8 for I(t) < x < L(t). 

In all cases, we solve on a grid in computational space 0 < ~ < 1 with uniform spacing A~. 
The grid mapping to physical space is given by 

X(~,t)  = { 2~I(t), if 0 _< ~ _< 0.5, (12) 
I ( t ) + 2 ( ~ - O . 5 ) ( L ( t ) - I ( t ) ) ,  if 0.5<_~_<1. 

Note that  the midpoint ~ = 0.5 of the computational domain is always mapped to the contact 
discontinuity I(t). This mapping will not generally be smooth at ~ = 0.5 and there may be 
quite a large jump in the physical mesh spacing Ax at the contact discontinuity if I(t) is far 
from L(t)/2. See Figure 2 for an example. 

_< x <_ L(t), where I(t) 
separated gases and L(t) 
while in Example 3 L(t) 

are the same and 7 = 1.4 
air/helium in Case 1 and 
V = 1.4 for 0 < x < I(t) 
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(a) Motion of grid lines for the  moving grid method  on Example  1. Every second cell 
interface from the  100-cell calculation is plotted over t ime. (Moving-mesh points, 
N = 100.) 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

J 
~.5 0.55 0 6  0.65 0 7  0.75 0 8  0.85 0 9  

i i i 

J 
J 

J 

0.95 

(b) Motion of the  contact  discontinuity I ( t )  as computed  with the  moving-mesh 
method,  for bo th  the  100-cell and 2000-cell calculation, plotted together.  (Contact  
location for N = 100 and N = 2000.) 

Figure 2. 
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It  might be preferable to use a nonuniform distribution of grid cells on each side of the contact 
so that  the cell width would vary smoothly rather than being discontinuous across the contact 

surface. We used (12) in part  to  demonstrate tha t  the algorithm can deal with such mesh 
discontinuities. 

The mesh movement in each time step is determined by the following procedure: at the be- 
ginning of each step, we know x~ = X(¢i, tn). We first solve the Riemann problem at i = N/2 
(assuming N is even), which is at ¢ = 1/2, corresponding to the contact discontinuity x = I(tn) 
in physical space. In solving this Riemann problem, we must take into account the fact that  
7 may be different on each side of the resulting contact discontinuity, which is the two-wave. 
The one-wave and three-wave are each in a different gas. This is a simple modification to the 
s tandard Riemann solver (see the software). Let tn  be the speed of the contact discontinuity 
resulting from this Riemann problem, i.e., ~n = A2/2 in the s tandard notat ion for wave speeds. 

This approximates F(tn) and is the speed used to move the grid. For i <_ N/2, the grid then 
moves according to 

• n = 2~i,~, for i < N Xi _ - ~ .  

When L(t) - 1 is fixed, the mesh velocity for i > N/2 is also determined directly 

N 
"'~ = 2(1 - ~i)/:n, for i > - - .  xi - 2 

The case where L(t) varies is discussed in Example 3. 

6. N U M E R I C A L  R E S U L T S  

EXAMPLE 1. 
Consider a shock tube problem in a fixed tube 0 < x < 1 with a single gas (with V = 1.4) and 

initial conditions p = 1, u = 0, 
10, if x < 0 . 5 ,  

P = 1, if x > 0.5. 

This gives rise to the wave structure seen in Figures 3 and 4, which show contour plots of the 
density and velocity in the x-t plane for four different computations. The tube is closed at both 
ends so tha t  the shock and rarefaction waves reflect. The gas initially occupying x < 0.5 and that  
initially occupying x > 0.5 do not mix, but  remain separated by a contact  discontinuity at some 
location I( t ) .  The motion of this contact surface is most  clearly seen in Figure 2, which shows 
the motion of the grid lines in a moving-mesh calculation. The mesh was chosen by uniformly 
stretching or compressing the grid on either side of the contact  surface so tha t  there are always 
an equal number of cells on each side of I( t ) ,  using (12). The contact discontinuity then follows 
a cell interface and is not smeared. On the right of Figure 2, the motion of I(t) for two different 
resolutions (100 cells and 2000 cells) are plotted together, showing that  the coarse grid calculation 

captures the interface motion very well. 
For reference solutions, we performed two different calculations with 2000 mesh cells, one on 

a uniform mesh and one on the moving mesh. These agreed very well, though the moving- 
mesh method gave slightly sharper shocks and a sharper contact  discontinuity. We then did 
a comparison of the uniform and moving-mesh methods with only 100 cells in each case. The 
moving-mesh method performed remarkably better. 

Figure 3 shows contour plots of the density from these four calculations. Note tha t  the 100-cell 
moving-mesh results look nearly as sharp as the 2000-cell uniform mesh results. On the 100-cell 
uniform mesh, the structure of the contact is nearly completely destroyed when it is hit by the 
reflected rarefaction wave at x ~ 0.85, t ~ 0.4. 

Figure 4 shows contour plots of the velocity for the same four calculations. The velocity should 
be continuous across the contact discontinuity. In the moving-mesh plots, the motion of the 
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(a) Density contours,  uniform grid, N = 100. 
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(b) Density contours,  moving mesh, N = 100. 

Figure 3. Contour  plots of densi ty in the  x-t  plane for Example  1, four different 
computa t ions  (x is on the  horizontal axis). (a) and (c) are with a uniform grid, (b) 
and (d) axe with the  moving-mesh  method  which tracks the  contact  discontinuity. 
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(c) Density contours, uniform grid, N = 2000. 
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(d) Density contours, moving mesh, N = 2000. 

Figure 3. (cont.) 
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(b) u contours,  moving mesh,  N = 100. 

Figure 4. Contour  plots of velocity in the  x - t  plane for Example  1, four different com- 
puta t ions .  (a) and (c) are with a uniform grid, (b) and (d) ave with the  moving-mesh 
me thod  which tracks the  contact  discontinuity. The  velocity should be cont inuous 
across the  contact  discontinuity, which is shown in the  moving-mesh  resul ts  as a 
dashed line. 
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-v, ,,~OVmg mesh, N ~ 2000. 

Figure 4. (cont.) 
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contact  is shown by a dashed line for reference. Note tha t  the  contours remain  smooth across 

this  curve in spite  of the  discontinuit ies  in mesh width.  

The  right plot  in Figure  2 shows the  mot ion of the  contact  discont inui ty  I ( t )  as computed  in 

the 100-cell and 2000-cell moving-mesh calculations. The two lie on top of one another  to plot t ing 
accuracy, and over the  t ime per iod shown agree to within 10 -3 everywhere. 

Finally, F igure  5 shows the  computed  solution (p, u,p) at one par t icular  t ime t = 0.7 for the 

100-cell uniform mesh (left column) and the 100-cell moving mesh (right column).  In each ca',~e, 

the solid line reference solution is from the 2000-cell moving-mesh calculation.  Note tha t  on the 

moving mesh the velocity and pressure are smooth through the contact ,  which is indicated by 

the dashed line. 

The  apparen t  zig-zag s t ructure  of the  contour plots are a plot t ing ar t i fact  due to the fact tha t  

the solut ion was ou tpu t  at  relat ively few t imes in the t direction. 

EXAMPLE 2. 

The two tests  described in this  example  were proposed by Karni  in order  to test  her hybrid 

approach to mult if luid flows [14]. Variat ions of these tests  were also used by Jenny, Miiller and 

Thomann  [15] and by Fedkiw st al. [16]. 

The  physical  se tup for both  tests  is to consider the  interact ion of a s t rong shock (Mach 3.6055) 

moving from left to right in air with an a i r /he l ium (Test D, Case 1 from [14]) or an a i r /R22 

(Test D, Case 2) interface. R22 is the  refrigerant commonly known as freon, which is heavier 

than  air. For the  numerical  'results repor ted  below, the  init ial  shock posi t ion was set to 0.3 and 

the initial  interface posi t ion is at  x = 0.5. The init ial  condit ions are as follows. 
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(a) Density at t = 0.7, uniform grid, N = 100. 

Figure 5. The computed solution to Example 1 at one particular time t = 0.7 for 
the 100-cell uniform mesh and the 100-cell moving mesh. In each case, the solid 
line reference solution is from the 2000-cell moving-mesh calculation. The contact 
discontinuity tracked by the moving mesh is indicated by the dashed line. 
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(b) D e n s i t y  a t  t = 0.7, m o v i n g  mesh ,  N = 100. 
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Figure 5. (cont.) 
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(f) Pressure p at t = 0.7, moving mesh, N = 100. 

Figure 5. (cont.) 

CASE 1. 

(4.3333, 3.2817, 15.0), 

q l  = ( p l , u l , p l )  = (1.0,0.0,1.0),  

q2 = (P2, u2,P2) = (0.1379,0.0, 1.0), 

with '/1 = 1.4 and "/2 = 1.67. 

I I 

0.8 0.9 

CASE 2. The  d a t a  for q l  to the  left of the  interface is as given in the  previous test .  To the right 

of the  interface is the  heavier gas R22, 

q2 = ( p 2 , u 2 , P 2 )  = (3.1538,0.0,1.0), preshock, R22, 0.5 < x < 1, 

with '/1 -- 1.4 and 72 = 1.249. 

In bo th  cases, we apply  inflow (outflow) bounda ry  condit ions at  the  left (right) boundary.  

Figure  6 i l lustrates  the  field variables at  a t ime after the  shock-interface interact ion for the  two 

cases of this  example.  

preshock, helium, 0.5 < x _< 1, 

postshock, air, 0 < x < 0.3, 

preshock, air, 0.3 < x < 0.5, 
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(a) Case 1: density. 
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(b) Case 1: velocity. 

Figure 6. Numerical results for Example 2. The  circles and solid line are computed 
using 200 and 2000 mesh-cells, respectively. The position of the computed interface 
is marked by a dashed line. 
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(c) Case I: pressure. 
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(d) Case 2: density. 

Figure 6. (cont.) 
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(e) Case 2: velocity. 
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Figure 6. (cont.) 
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Note that ,  for both tests, the entire flow field is supersonic and tha t  the t ransmit ted waves are 
shocks. On the other hand, the reflected wave is a rarefaction in the first test and a shock in the 
second one. Note also how our scheme accurately locates all wave positions; this can be compared 
with the results obtained by the hybrid algorithm of [14] and contrasted with the results given 
by the ghost fluid method of [16]. 

EXAMPLE 3. 

Next we consider a more interesting problem where there are two different gases in the tube, 
with 7 = 1.4 for x < 0.5 a n d ' r  = 2.8 for x > 0.5. In addition, the right end of the tube is 
now a piston at position x = L(t), which is free to move without  friction in the tube. The 
piston separates the gas under s tudy from the exterior environment which is assumed to be held 
at constant pressure Pout. The piston has a mass m, surface area A, and is accelerated by the 
pressure difference p ( L ( t ) ,  t) - Po between the interior and exterior gas at the piston. In each 
time step, the pressure in the final grid cell is used to calculate this acceleration L(tn), according 
to 

L(tn) = __A (P~v - Pout), 
m 

where p~  is the pressure in the rightmost grid cell at t ime tn. This is used to update  the piston 
velocity ]~'~ and position L n by 

L '~ = L " - ~  + A t L ( t n ) ,  

Ln+ 1 = L n + A t L  n. 

Initially the piston is stationary: L ° = 1 and L ° = 0. The solid wall boundary  condition at the 
piston is imposed by setting values in two ghost cells i = N + 1 and i = N + 2 following the 
general approach of [1], with 

p N + I  ~ P N ,  

U N + I  -~ 2]-J n - -  U N ,  

P N + I  ---- P N ,  

P N + 2  ---- P N + I ,  

U N + 2  : 2 L  n - U N + l ,  

P N + 2  ~- P N + I .  

This is simply a reflection of the data  at the boundary  with the velocity reflected in such a way 
tha t  the piston moves along the contact discontinuity in the resulting solution to the Riemann 

problem at the right boundary. 

In the calculations presented here, A / m  -- 2 was used. Initially, the gas in the tube is taken 

to have uniform density, pressure, and zero velocity, with p -- 1, p -= 0.5, while Pout ---- 1. 
The pressure difference p - Pout causes the piston to smoothly accelerate inwards, leading to a 
compression wave which is amplified as it passes through the interface at x = 0.5 into the more 

compressible gas with smaller 7. 

Figure 7 shows contours of density for calculations with 100 and 2000 grid cells, over the time 
interval 0 _< t < 3. Figure 8 shows the computed density and pressure at t = 3.0 for grids 
with 100 and 200 cells, in each case compared to the 2000-cell reference solution. 

Figure 9 shows I ( t )  and L(t) for 100-cell and 2000-cell calculations taken out to much larger 
time, 0 < t < 20. The coarse grid calculation gives nearly the same behavior as the fine grid 
reference solution. Only for large t is any difference visible to plotting accuracy, and even then 
the qualitative structure is very close. 
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(a) Density contours in x-t plane. (100 mesh cells.) 
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(b) Density contours in x-t plane. (2000 mesh cells.) 

Figure 7. (a). Motion of the interface l ( t)  and the piston L(t) for Example 3. Con- 
tour plots of density in the x-t plane for Example 3, two different computations with 
the moving-mesh tracking both the interface motion l ( t)  and the piston motion L(t). 
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(a) Rho (density) for the lO0-cell moving mesh. 
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(b) Rho (density) for the 200-cell moving mesh. 

Figure 8. The computed solution to Example 3 at one particular time t = 3.0 for 
the 100-cell moving mesh and the 200-ceU moving mesh. In each case, the solid 
line reference solution is from the 2000-cell moving-mesh calculation. The contact 
discontinuity l(t) and the piston location L(t) at this time are indicated by the 
dashed line. 
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(c) Pressure for the 100-cell moving mesh. 
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(a) Motion of the interface I(t) and the piston L(t) 
for Example 3. Curves from two different compu- 
tations with 100 cells and 2000 cells are plotted 
together. 

(b) Blow-up of this plot near one reversal of I(t). 
In this plot, the solid line is the 2000-cell result and 
the symbols indicate I(t) for the 100-cell result. 

Figure 9. 

7. C O N C L U S I O N S  A N D  E X T E N S I O N S  

We have developed a general one-dimensional moving-mesh method for hyperbolic systems of 
conservation laws. The test problems presented here demonstrate that this algorithm can be 
used to obtain high resolution results in problems where a fluid interface or moving boundary 

interacts both with strong shock waves and with smooth flow. 

We have chosen a simple strategy for distributing the mesh points, equally spaced within 
each gas, to illustrate the algorithm for multifluid problems. The results indicate that good 
accuracy is obtained even when there is a large jump in the cell size at the interface, a robustness 
feature which is important more generally. It would be quite easy to couple this method with 
other procedures for moving the mesh points. For example, Stockie, Mackenzie and Russell [17] 
recently coupled our method together with an additional equation for redistribution of the mesh 
points based on error estimation. They have applied the method to cluster grid points near shock 
waves in Burgers', Euler, and Buckley-Leverett equations. 

In one space dimension, it is generally possible to compute on a very fine grid and so the need 
for moving-mesh methods may not be so clear. However, the use of our method requires very 
little additional computation and can provide significantly better resolution on any particular 
grid. It is based on the wave-propagation algorithm and CLAWPACK software, which can easily 
be adapted to other hyperbolic problems. Moreover, there are problems where a moving grid 
is preferable to a fixed grid for physical reasons. For example, the moving piston problem of 
Example 3 cannot be solved on a fixed grid, unless this is combined with some form of front 
tracking or another approach to handle the changing domain. Examples 2 and 3 also involve a 
physical interface between different gases. On a fixed grid, this interface would move relative to 
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the grid, result ing in cells containing a mixture  of the  gases. Resolving the solution accurately 

near the  interface then  requires special methods,  as s tudied in [14], for example.  The  moving- 

mesh me thod  keeps the  two gases dist inct .  This  approach can be easily generalized to handle 

problems wi th  more interfaces. In  fact, it  is possible to  use this  approach to s tudy  the propagat ion  

of waves th rough  a rap id ly  varying or random mater ia l  (as in [5,6]) in the  fully nonlinear case. 

There  are interest ing homogenizat ion questions tha t  are still not  well unders tood  in the  one- 

dimensional  case. We hope tha t  the  moving-mesh method,  by providing an accurate  solution of 

the  t rue  problem,  may aid in the  investigation of these propagat ion  phenomena and the s tudy  of 

homogenizat ion procedures.  This  is current ly  being investigated. 

A na tu ra l  quest ion is whether  this  approach can be extended to more than  one dimension. 

Mul t id imensional  moving-mesh methods  are often difficult to use in fluid dynamics  problems since 

the  grid will typica l ly  suffer large dis tor t ions and possible tangling. However, for hyperbolic  wave 

propaga t ion  problems in heterogeneous solids, it would be very useful to have a moving-mesh 

method  t ha t  follows relat ively small  deformations of the  material .  This  would allow the interfaces 

between different mater ia ls  to  remain well defined, and allow the solution of appropr ia te  Riemann 

problems at  these interfaces to correctly model  the  t ransmission and reflection of waves. 

Mul t id imensional  versions of the  wave propagat ion  algori thm are presented in [1,18] and imple- 

mented in the  C L A W P A C K  software. These methods  are again based on solving one-dimensional  

Riemann problems,  and apply  to a wide variety of hyperbolic  systems. The  pr incipal  difficulty in 

extending the  moving-mesh method  to mult idimensions is the fact t ha t  a space-t ime interface be- 

tween cells is no longer a surface along which the Riemann solution is constant ,  except  in certain 

special cases, and hence, the  numerical  flux through this surface is harder  to define. However, 

it can be chosen as a ruled surface defined by the movement of the  corners, and this appears  to 

allow the  development  of good approximate  fluxes. This extension is current ly  being developed 

and will be repor ted  elsewhere. 
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