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Abstract

In this paper, we define a non-iterative transformation method for boynda
layer flows of non-Newtonian fluids past a flat plate. The problem to be
solved is an extended Blasius problem depending on a parameter. This
method allows us to solve numerically the extended Blasius problem by
solving a related initial value problem and then rescaling the obtained nu-
merical solution. We find that our computed numerical results, for a wide
range of the parameter involved, are in very good agreement with the data
reported in the literature.
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1 Introduction.

The most valuable development in fluid mechanics within @i Zentury was,
certainly, the concept of boundary layer flows introducedPogndtl [32]. A
boundary layer is that layer of fluid that forms near a surfiuee is subject to
the fluid flow. Therefore, boundary layers occur in severatpcal problems like
flows: inside the blood vessels, attached to aeroplane wimgsgation channels,
near earth’s surface and around buildings due to windsvirispipes, around a
moving car and many others. There are two simplest problartigs contest in
the literature. The first one describes the flow along with azbatal flat mo-
tionless plate due to a constant free stream, see Blasiug[#.second is flow
induced by a horizontal flat plate moving with constant vijomside a quiet
fluid, see Sakiadis [34, 35]. In the first problem the fluid wgpincreases from
zero at the plate, no-slip boundary condition, to the ma#ash velocity far away
from the plate. In the second problem, the fluid velocity is&do the plate ve-
locity at the plate, no-slip condition, and decreases to faraway from the plate.
In both cases, the practical interest is to compute the stig¢he plate (skin fric-
tion), this datum is essential to the determination of tlseeus drag on the plate,
see Schlichting [36]. It turns out that the increase of thd sleear in Sakiadis
solution with respect to Blasius solution is about 33.64% feeinstance [19]. In
the above contest the Blasius boundary value problem (BVRYyén dpy
3 2
at3 g2 =0
1)

(O)=%(O):O7 %(n)—ﬂ as n—o.
This is a BVP defined on the semi-infinite real aj@s~). Weyl [38] proved
that the unique solution of (1) has a monotone decreasingy@second order
derivative on all[0,) and approaches to zero gsgoes to infinity. In (1) the
governing differential equation and the two boundary cbods at the origin are
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invariant with respect to the scaling group of point transfations
n*=A-19, f*=A%f (2)

wherea is a nonzero constant, while the asymptotic boundary camdi not in-
variant. The interest related to this invariance propsiigdoth analytical and nu-
merical. As a consequence to that transformation, a singéesce and unique-
ness Theorem was given by J. Serrin, this is cited, for icgtabhy Meyer [29,
pp. 104-105]. AS far as a numerical viewpoint is concernetraiterative trans-
formation method (ITM) reducing the solution of (1) to thdudmn of a related
initial value problem (IVP) was deduced by Topfer [37]. Mover, the mentioned
invariance properties are basic to the error analysis ofrthecated boundary so-
lution proposed by Rubel [33], see Fazio [17] for the full dstaBlasius problem
was used, recently, by Boyd [4] as an example were some praimnianalysis
allowed researchers of the past to solve problems, govdmyedrtial differential
equations, that, before the computer invention, might berstise impossible to
face.

We have applied a non-ITM to several problems of practicdrast. For
istance, to the Blasius equation with slip boundary condjterising within the
study of gas and liquid flows at the micro-scale regime [6, 28] reported in
[18]. To the Blasius equation with moving wall considered blydk et al. [25] or
surface gasification studied by Emmons [7] and recently byahd Law [27] or
slip boundary conditions investigated by Gad-el-Hak [6}tartin and Boyd [28],
see Fazio [20] for details. In this contest, we found a wayoteesnon-iteratively
the Sakiadis problem [34, 35]. A recent review dealing wita terivation and
application of non-ITM can be be found, by the interestedieean [22].

Moreover, Topfer's method has been extended to classeslaigons in bound-
ary layer theory involving one, or more than one, physicahpeeter. Na [30] was
the first to study such an extension, see also NA [31, Chapt@} 8 an extensive
survey of this subject.

Finally, an iterative extension of the transformation noethas been defined,
for the numerical solution of free BVPs, by Fazio and Evang g% also the
applications studied by Fazio [8, 9, 11, 14, 16]. This itemextension was
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used to solve numerically several problems of practicaredt: free boundary
problems [23, 14, 15], a moving boundary hyperbolic probld2], Homann
and Hiemenz's problems governed by the Falkner-Skan eaquati [13], one-
dimensional parabolic moving boundary problems [16], t@odants of the Bla-
sius problem [18], namely: a boundary layer problem overimgpsurfaces, stud-
ied first by Klemp and Acrivos [26], and a boundary layer pesblwith slip
boundary condition, that can be found in the study of gas myuid flows at the
micro-scale regime [6, 28], parabolic problems defined omounded domains
[24] and, recently, see [19], an additional variant of thesila problem in bound-
ary layer theory: the so-called Sakiadis problem [34, 35$. f& as the ITM is
concerned, a recent review dealing with all the cited proisiean be be found in
[21].

2 Boundary layer of non-Newtonian fluids past a
flat plate

The boundary layer of non-Newtonian fluids flowing past a flatepis described,
using suitable similarity variables, by an extended Blapnablem

(2-P)

3 2
d=f d-f 0

P(P+1) an3 + fd_nz

df df ©
(0)=ﬁ(0)=07 507)%1 as n— o,

whereP verifies the one-side conditions<OP, see Acrivos et al. [1]. We remark

that our problem (3) reduces, fBr= 1, to the celebrated Blasius problem (1).

2.1 The non-ITM

Let us remark here that, a non-ITM can be applied to the Blgsiablem (1)
because the governing differential equation and the twadary conditions at
n = 0 are invariant with respect to and the asymptotic boundangition is not



invariant under the scaling transformation (2). In ordeapply a non-ITM to the
BVP (3) we investigate its invariance under the scaling griygoint transforma-
tion

f*=Af, n*=A%. (4)

We find that the extended Blasius problem (3) is invariant wetipect to (4) iff

P2

“ o1 ®)

Now, we can integrate the extended Blasius equation in (temrin the star

variables or{0, ns], wheren; is a truncated boundary that can be found by trial,
with initial conditions

_df d2f*

£(0)= G- (0=0. G5(0)=1, ©)

in order to compute an approximati@é;(n;;) for g—,ﬁ(w) and the corresponding

value ofA according to the equation

. 1/(5-1
A:[dfmm] . @)

dn*

Computed the value of by equation (7), we can find the missed initial condition
by the equation
d?f
dn?
Finally, we can compute the numerical solution of the oagjiBVP (3) by rescal-

=219 0 ®)

ing the numerical solution of the IVP. Therefore, so doingfind the solution of
a given BVP by solving a related IVP.

3 Numerical results

To compute the numerical solution, we used an explicit eagtier Runge-Kutta

method [5, p. 180] with constant step size. In table 1 we rtethermissing initial

. 2
condltlons%(O) for several values of the parameter In table 1 we compare



Table 1: Missing initial conditions for different values iBf

P 250 by[1] $5(0) from(9) %(0)
0.05 1.400938 0.214892 1.540752
0.1 0.729857 0.221302 0.826478
0.2 0.505623 0.237305 0.490342
0.3 0.354290 0.244046 0.391515
0.4 0.350396
0.5 0.331200 0.268324

0.6 . ) 0.3239457
0.7 . . 0.3220337
0.8 . . 0.323544
0.9 . ) 0.327139
1. 0.33206 0.323 0.332057
1.5 0.363215 0.384047 0.398432

our results with those reported in the paper by Acrivos e{Hland with those
computed by the Pohlhausen method using the formula

p2

d?f 39 15 7P
d—rlz(o) = [Z_SOWJ : 9)
From these results we can realize that the Pohlhausen methioaccurate for
small values oP and that our numerical results are in very good agreemeht wit
those found by Acrivos et al. [1]. As remarked by Acrivos et{&], for the range

P > 2 the boundary layer flow is not an asymptotic state of lammation which

is approached as the mainstream velocity is made suffigitarthe. Therefore,
we have neglected to investigate the rangP of 2.

Figure 1 shows the solution of the extended Blasius problescribing the
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behaviour of a boundary layer flow due to a moving flat surfaceérsed in an
otherwise quiescent fluid, correspondinge- 0.3. For the results shown in this
figure we used an eight order Runge-Kutta method [5, p. 180] eonstan step
sizeAn = 0.001 and a truncated boundayy = 10. From figurel it is evident that
n& < Ne and this is, of course, convenient from a numerical viewplo@tause it
means that we make let computational effort to computed timeemical solution
of the original problem.

The caseP = 1, as mentioned before, is the Blasius problem (1). In this
case, our non-ITM reduces to the original method develoyetidpfer [37], and
the computed skin friction coefficient value, namel3&2057336215, obtained
with An = 0.001 andng = 10, is in very good agreement with the values avail-
able in the literature, see for instance the valu@3@057336215 computed by
Fazio [10] by a free boundary formulation of the Blasius peoblor the value
0.33205733621519630 computed by Boyd [3] who believes thahaldecimal
digits to be correct.

4 Final remarks and conclusions.

The main result of this paper is the extension of the non-IpMposed by Topfer
[37] and defined for the numerical solution of the well-knoasius problem

[2], to an extended Blasius problem. This method allows uskeesnumerically

the extended Blasius problem by solving a related initialggiroblem and then
rescaling the obtained numerical solution. The obtainedercal results were
computed by an eight order Runge-Kutta method [5, p. 180]aadte necessity,
for accuracy reasons, to be forced to use very small step.size
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Figure 1. Numerical results computed with the non-ITM foy {@h P = 0.3.
The starred variables problem, top frame, and, bottom frémeeoriginal problem
solution components found after rescaling.
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