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As far as the numerical solution of boundary value problems defined on an infi-

nite interval is concerned, in this paper, we present a test problem for which the

exact solution is known. Then we study an a posteriori estimator for the global error

of a nonstandard finite difference scheme previously introduced by the authors. In

particular, we show how Richardson extrapolation can be used to improve the numer-

ical solution using the order of accuracy and numerical solutions from 2 nested

quasi-uniform grids. We observe that if the grids are sufficiently fine, the Richardson

error estimate gives an upper bound of the global error.
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1 INTRODUCTION

The main aim of this paper is to show how Richardson extrapolation can be used to define an error estimator for a nonstandard

finite difference scheme applied to boundary value problems (BVPs) defined on the infinite interval. We construct at first a

quasi-uniform map from a reference finite domain, and we build on the original domain a nonstandard finite difference scheme.

As far as the novelty of this approach is concerned, we solve a given BVP on a semi-infinite interval by introducing a stencil

that is constructed in a way to avoid the singularity at infinity, see Fazio and Jannelli1 for more details.

Without loss of generality, we consider the class of BVPs

du
dx

= f (x,u) , x ∈ [0,∞),

g (u(0),u(∞)) = 0,
(1)

where u(x) is a d-dimensional vector with components 𝓁u(x) for 𝓁 = 1, … , d, f ∶ [0,∞) × Rd → Rd, and g ∶ Rd × Rd → Rd.

Here, and in the following, we use Lambert notation for the vector components.[2, pp1-5] Existence and uniqueness results, as

well as results concerning the solution asymptotic behavior, for classes of problems belonging to Equation 1 have been reported

in the literature, see for instance Granas et al,3 Countryman and Kannan,4 and Agarwal et al.5-7

Numerical methods for problems belonging to Equation 1 can be classified according to the numerical treatment of the

boundary conditions imposed at infinity. The oldest and simplest treatment is to replace infinity with a suitable finite value, the

so-called truncated boundary. However, this simple approach has revealed some drawbacks that suggest not to apply it. This

is especially true if we have to face a given problem without any clue on its solution behavior. Several other treatments have

been proposed in the literature to overcome the shortcomings of the truncated boundary approach. In this research area, they are

worth of consideration: the formulation of the so-called asymptotic boundary conditions by de Hoog and Weiss,8 Lentini and

Keller,9 and Markowich10,11; the reformulation of the given problem in a bounded domain as studied first by de Hoog and Weiss

and more recently by Kitzhofer et al12; the free boundary formulation proposed by Fazio13 where the unknown free boundary
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can be identified with a truncated boundary; the treatment on the original domain via pseudo-spectral collocation methods, see

the book by Boyd14 or the review by Shen and Wang15 for more details on this topic; and, finally, a nonstandard finite difference

scheme on a quasi-uniform grid defined on the original domain by Fazio and Jannelli.1

When solving a mathematical problem by numerical methods, one of the main concerns is related to the evaluation of the

global error. For instance, Skeel16 reported 13 strategies to approximate the numerical error. Here, we want to show how within

Richardson extrapolation theory an error estimate can be derived. For any component U of the numerical solution, the global

error e can be defined by

e = u − U, (2)

where u is the exact analytical solution component. Usually, we have several different error sources: discretization, round-off,

iteration, and programming errors. Discretization errors are due to our replacement of a continuous problem with a discrete

one: The related error decreases by reducing the discretization parameters, enlarging the value of N, the number of grid points

in our case. Round-off errors arise from the utilization of floating-point arithmetic to implement the algorithms available to

solve the discrete problem. This kind of error usually decreases by using higher precision arithmetic, double or, when available,

quadruple precision. Iteration errors are due to stopping an iteration algorithm that is converging but only as the number of

iterations becomes large. Of course, we can reduce this kind of error by requiring more restrictive termination criteria for our

iterations, in the present case, the iterations of Newton's method. Programming errors are behind the scope of this work, but they

can be eliminated or at least reduced by adopting what is called structured programming. When the numerical error is caused

prevalently by the discretization error and in the case of smooth enough solutions, the discretization error can be decomposed

into a sum of negative powers of N

u = UN + C0

(
1

N

)p0

+ C1

(
1

N

)p1

+ C2

(
1

N

)p2

+ · · · , (3)

where C0, C1, C2, … are coefficients that depend of u and its derivatives, but are independent on N, and p0, p1, p2, … are

the true orders of the error. The value of each pk, for k = 0, 1, 2, · · ·, is usually a positive integer with p0 < p1 < p2 < · · ·. All

together, the pk's constitute an arithmetic progression of ratio p1 −p0, see Joyce.17 The value of p0 is called the asymptotic order

or the order of accuracy of the method or of the numerical solution U.

2 THE NUMERICAL SCHEME

To solve a problem in the class 1 on the original domain, we discuss first quasi-uniform grids maps from a reference finite

domain. We introduce on the original domain a nonstandard finite difference scheme, developed by Fazio and Jannelli in previ-

ous study,1 that allows us to impose the given boundary conditions exactly. As far as the novelty of our approach is concerned,

we solve a given BVP on a semi-infinite interval by introducing a stencil that is constructed in such a way as to avoid the

singularity at infinity.

2.1 Quasi-uniform grids
Let us consider the smooth strict monotone quasi-uniform maps x = x(𝜉), the so-called grid generating functions, see Boyd[14,

pp325-326] or Canuto et al,[18, p96]

x = −c · ln(1 − 𝜉), (4)

and

x = c
𝜉

1 − 𝜉
, (5)

where 𝜉 ∈ [0, 1], x ∈ [0,∞], and c > 0 is a control parameter. So that a family of uniform grids 𝜉n = n∕N defined on the

interval [0, 1] generates one parameter family of quasi-uniform grids xn = x(𝜉n) on the interval [0,∞]. The 2 maps 4 and 5

are referred as logarithmic and algebraic map, respectively. As far as the authors' knowledge is concerned, van de Vooren and

Dijkstra19 were the first to use this kind of maps. We note that more than half of the intervals are in the domain with length
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FIGURE 1 Quasi-uniform grids: top frame for Equation 4 and bottom frame for Equation 5. We note that, in both cases, the last mesh point is

xN = ∞

approximately equal to c and xN−1 = c ln N for Equation 4, while xN−1 ≈ cN for Equation 5. For both maps, the equivalent mesh

in x is nonuniform with the most rapid variation occurring with c ≪ x. The logarithmic map 4 gives slightly better resolution

near x = 0 than the algebraic map 5, while the algebraic map gives much better resolution than the logarithmic map as x → ∞.

In fact, for all 𝜉, but 𝜉 = 0, see Figure 1, it is easily verified that

−c · ln(1 − 𝜉) < c
𝜉

1 − 𝜉
.

The problem under consideration can be discretized by introducing a uniform grid 𝜉n of N + 1 nodes in [0, 1] with 𝜉0 = 0

and 𝜉n+1 = 𝜉n + h with h = 1∕N, so that xn is a quasi-uniform grid in [0,∞]. The last interval in Equations 4 and 5, namely,

[xN−1, xN], is infinite but the point xN−1/2 is finite, because the noninteger nodes are defined by

xn+𝛼 = x
(
𝜉 = n + 𝛼

N

)
,

with n ∈ {0, 1, … ,N − 1} and 0 < 𝛼 < 1. These maps allow us to describe the infinite domain by a finite number of intervals.

The last node of such grid is placed at infinity, so the right boundary conditions are taken into account correctly. Figure 1 shows

the 2 quasi-uniform grids x = xn, n = 0, 1, … ,N defined by Equations 4 and 5 with c = 10 and N equal to 10, 20, and 40,

respectively, from top to bottom.
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To derive the finite difference formulae, for the sake of simplicity, we consider a generic scalar variable u(x). We can

approximate the values of this scalar variable at mid-points of the grid by

un+1∕2 ≈
xn+3∕4 − xn+1∕2

xn+3∕4 − xn+1∕4

un +
xn+1∕2 − xn+1∕4

xn+3∕4 − xn+1∕4

un+1. (6)

As far as the first derivative is concerned, we can apply the following approximation

du
dx n+1∕2

≈ un+1 − un

2
(
xn+3∕4 − xn+1∕4

) . (7)

These formulae use the value uN = u(∞), but not xN = ∞. For a system of differential equations, Equations 6 and 7 can be

applied component-wise.

2.2 A nonstandard finite difference scheme
A nonstandard finite difference scheme on a quasi-uniform grid for the class of BVPs (Equation 1) can be defined by using the

approximations given by Equations 6 and 7 above. A finite difference scheme for Equation 1 can be written as follows:

Un+1 − Un − an+1∕2f
(
xn+1∕2, bn+1∕2Un+1 + cn+1∕2Un

)
= 0,

for n = 0, 1, … ,N − 1

g (U0,UN) = 0,
(8)

where

an+1∕2 = 2
(
xn+3∕4 − xn+1∕4

)
,

bn+1∕2 =
xn+1∕2 − xn+1∕4

xn+3∕4 − xn+1∕4

,

cn+1∕2 =
xn+3∕4 − xn+1∕2

xn+3∕4 − xn+1∕4

,

(9)

for n = 0, 1, … ,N − 1. The finite difference formulation 8 has order of accuracy O(N−2). It is evident that Equation 8 is a

nonlinear system of d(N + 1) equations in the d(N + 1) unknowns U = (U0,U1, … ,UN)T . For the solution of Equation 8, we

can apply the classical Newton's method along with the simple termination criterion

1

d(N + 1)

d∑
𝓁=1

N∑
n=0

|Δ𝓁Un| ≤ TOL, (10)

where Δ𝓁Un, for n = 0, 1, … ,N, 𝓁 = 1, 2, … , d, is the difference between 2 successive iterate components and TOL is a fixed

tolerance.

3 RICHARDSON EXTRAPOLATION AND ERROR ESTIMATE

The utilization of a quasi-uniform grid allows us to improve our numerical results. The algorithm is based on the Richardson

extrapolation, introduced by Richardson in 2 studies,20,21 and it applies to many finite difference methods: for numerical dif-

ferentiation or integration, or for solving systems of ordinary or partial differential equations, see for instance, Sidi.22 To apply

Richardson extrapolation, we perform several calculations on embedded uniform or quasi-uniform grids with total number of

nodes Ng for g = 0, 1, … , G. For the numerical results reported in the next section, for instance, we have used 5, 10, 20, 40,

80, 160, 320, 640, 1280, 2560, or 5120 grid points. We can identify these grids with the index g = 0, the coarsest one, 1, 2, and

so on towards the finest grid denoted by g = G. Between 2 adjacent grids, all nodes of the coarser one are identical to the even

nodes of finer grid due to uniformity. To find a more accurate approximation, we can apply k Richardson extrapolations on the

used grids
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Ug+1,k+1 = Ug+1,k +
Ug+1,k − Ug,k

2pk − 1
, (11)

where g ∈ {0, 1, 2, … ,G − 1}, k ∈ {0, 1, 2, … ,G − 1}, the value 2 = Ng+1∕Ng appearing in the denominator is the grid

refinement ratio, and pk is the true order of the discretization error. We note that each value of Ug+1,k+1 requires the computation

of 2 solution U in 2 embedded grids, namely, g + 1 and g at the extrapolation level k. For any g, the level k = 0 represents

the numerical solution of U without any extrapolation, which is obtained as described in Section 2.2. In this case, Richardson

extrapolation uses 2 solutions on embedded refined grids to define a more accurate solution that is reliable only when the grids

are sufficiently fine. The case k = 1 is the classical single Richardson extrapolation, which is usually used to estimate the

discretization error or to improve the solution accuracy. If we have computed the numerical solution on G+ 1 nested grids then

we can apply Equation 11G times performing G Richardson extrapolations.

The theoretical orders of accuracy pk of the numerical solution U with k extrapolations verify the relation

pk = p0 + k(p1 − p0), (12)

where this equation is valid for k ∈ {0, 1, 2, … ,G−1}. In any case, the values of pk can be obtained a priori by using appropriate

Taylor series or a posteriori as explained below.

To show how Richardson extrapolation can also be used to get an error estimate for the computed numerical solution, we

use the notation introduced above. Taking into account Equation 11, we can conclude that the error estimate by Richardson

extrapolation is given by

Eg+1,k =
Ug+1,k − Ug,k

2pk − 1
, (13)

for g ∈ {0, 1, 2, … ,G − 1}, k ∈ {0, 1, 2, … ,G − 1}. Here, pk is the true order of the discretization error. Hence, these values

give estimations of the global error without knowledge of the exact solution. Of course, pk can be found by

pk ≈
log(|Ug,k − u|) − log(|Ug+1,k − u|)

log(2)
, (14)

where u is again the exact solution (or, if the exact solution is unknown, a reference solution computed with a suitable large

value of N) evaluated at the same grid points of the numerical solution. We note that Eg+1,k is the error estimate for the more

accurate numerical solution Ug+1,k but only on the grid points of Ng.

4 AN APPLICATION: A BVP IN COLLOIDS THEORY

In this section, we consider a test problem with known exact solution for our error estimator. All numerical results reported

in this paper were performed on an ASUS personal computer with i7 quad-core Intel processor and 16 GB of RAM memory

running the Windows 8.1 operating system. The nonstandard finite difference scheme described above has been implemented

in FORTRAN. The results listed in this section were computed by setting

TOL = 1E − 12. (15)

The following test problem arises in the theory of colloids, see Alexander and Johnson23

d2u
dx2

− 2 sinh(u) = 0 x ∈ [0,∞),

u(0) = u0, u(∞) = 0,

(16)

where u0 > 0. The exact solution of the BVP 16, namely,
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u(x) = 2 ln

(
(eu0∕2 + 1) e−

√
2 x + (eu0∕2 − 1)

(eu0∕2 + 1) e−
√

2 x − (eu0∕2 − 1)

)
, (17)

has been found by Countryman and Kannan,4,24 and the missing initial condition is given by

du
dx

(0) = −2
√

cosh(u0) − 1. (18)

We rewrite the governing differential equation as a first-order system and indicate the exact solution by u = (1u,2 u)T and the

numerical solution by U = (1U,2 U)T. To fix a specific problem, as a first case, we consider u0 = 1. As mentioned before, we

apply 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, or 5120 grid points, so that G = 10, and we adopt a continuation approach

for the choice of the first iterate. This means that the accepted solution for N = 5 is used as first iterate for N = 10, where

the new grid values are approximated by linear interpolations, and so on. The first iterate for the grid with N = 5, where the

field variable was taken with a constant value 1 and its derivative was taken with a constant value −1, is shown on the top

FIGURE 2 Sample iterates for problem 16 with u0 = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Final iterate and exact solution for problem 16 with u0 = 1 and N = 40. On the left, solutions on the quasi-uniform grid, and on the

right, zoom of the transient behavior in [0, 5] [Colour figure can be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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frame of Figure 2. The bottom frame of the same figure shows the accepted numerical solution. Our relaxation algorithm takes

7 iterations to verify the termination criterion 10 with TOL given by Equation 15. Once the continuation approach has been

initialized, the iteration routine needs 3 or 4 iterations to get a numerical solution that verifies the stopping criterion. For the

sake of completeness in Figure 3, we display the numerical solution for N = 40 along with the exact solution.

FIGURE 4 Problem 16 with u0 = 1, global errors for the field variable on the left and its first derivative on the right [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 5 Global and a posteriori error estimates for the field variable and its first derivative for Equation 16 with u0 = 1. Left: N = 20, 40,

right: N = 40, 80. Here, 1e and 2e are the global errors defined by Equation 2, whereas 1E and 2E are the error estimates provided by Equation 13

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Final iterate and exact solution for problem 16 with u0 = 7 and N = 320. On the left, solutions on the quasi-uniform grid, and on the

right, zoom of the transient behavior in [0, 5] [Colour figure can be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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Figure 4 shows in a log-log scale the computed empirical errors. We can compute the orders of accuracy p0, p1, and p2

according to the formula 14. As it is easily seen from Figure 4, we obtained p0 ≈ 2, p1 ≈ 4, and p2 ≈ 6 for both the field

variable and its first derivative. As far as the a posteriori error estimator is concerned in Figure 5, we report the computation

related to 2 sample cases: namely, the estimate obtained by using N = 20, 40 and N = 40, 80. We note that the global error, for

both the solution components, is of order 10−3 and decreases as we refine the grid. It is easily seen that the estimator defined

by Equation 13 provides upper bounds for the global error.

A more challenging test case is given by setting u0 = 7. The (inaccurate) accepted numerical solution for the grid with

N = 320 is shown on Figure 6. Indeed, the chosen grid is unable to resolve the transient behavior at x = 0 of the first derivative

of the solution. In Table 1, we list the computed as well as the extrapolated values obtained for the missing initial condition 18.

TABLE 1 Richardson extrapolation for
du
dx
(0)=2U0

Ng
2Ug,0

2Ug,1
2Ug,2

160 −43.835177171609345

320 −45.864298511341850 −46.540672291252690

640 −46.537797149336093 −46.762296695334179 −46.777071655606278

1280 −46.725033491934731 −46.787445606134277 −46.789122200187620

2560 −46.773360098843838 −46.789468967813541 −46.789603858592159

5120 −46.785544794016836 −46.789606359074504 −46.789615518491907

FIGURE 7 Problem 16 with u0 = 7, global errors for the field variable on the left and its first derivative on the right [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 8 Zoom in the domain related to the initial transient behavior for the global errors and a posteriori error estimates for the field variable

and its first derivative for Equation 16 with u0 = 7. Left: N = 160, 320, right: N = 320, 640. Here, 1e and 2e are the global errors by Equation 2,

whereas 1E and 2E are the error estimates provided by Equation 13 [Colour figure can be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
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For the sake of brevity, in this table, we do not report the less accurate values obtained with the coarser grids. These results can

be compared with the exact value,
du
dx
(0) ≈ −46.789615734913319, obtained by Equation 18.

Figure 7 shows in a log-log scale the computed errors. From Figure 7, it is clear that the computed orders, using Equation 14,

are slightly different from the theoretical ones, namely, p0 ≈ 1.99, p1 ≈ 3.96, and p2 ≈ 5.77.

As far as the a posteriori error estimator is concerned in Figure 8, we report the computation related to 2 sample cases: namely,

the estimate obtained by using N = 160, 320 and N = 320, 640. Once again, the global error, for both the solution components,

decreases as we refine the grid and the estimator defined by Equation 13 provides upper bounds for the global error.

5 CONCLUSIONS

In this paper, we have defined an a posteriori estimator for the global error of a nonstandard finite difference scheme applied to

BVPs defined on an infinite interval. A test problem was examined for which the exact solution is known. We tested our error

estimator for 2 sample cases: a simpler one with smooth solution and a more challenging one presenting an initial fast transient

behavior for one of the solution components. For this second test case, we showed how Richardson extrapolation can be used

to improve the numerical solution using the order of accuracy and numerical solutions from 2 nested quasi-uniform grids.

In our previous paper,1 instead of Equation 6, we derived the finite difference formula

un+1∕2 ≈
xn+1 − xn+1∕2

xn+1 − xn
un +

xn+1∕2 − xn

xn+1 − xn
un+1. (19)

However, by setting n = N − 1 and xN = ∞, this formula 19 reduces to uN−1/2 = uN−1 that does not involve the boundary value

uN. Therefore, the boundary condition cannot be used. In Fazio and Jannelli,1 this was the reason that forced us the use of a

modification of this formula at n = N−1, see Fazio and Jannelli1 for details. The novel approach proposed by the new formula 6

in this paper completely overcomes this drawback.
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