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Abstract: In this paper, we present an original numerical method for the solution of
a Blasius problem with extended boundary conditions. To this end, we extend to the
proposed problem the non-iterative transformation method, proposed by Töpfer more than
a century ago and defined for the numerical solution of the Blasius problem. The proposed
method, which makes use of the invariance of two physical parameters with respect to an
extended scaling group of point transformations, allows us to solve the Blasius problem
numerically with extended boundary conditions by solving a related initial value problem
and then rescaling the obtained numerical solution. Therefore, our method is an initial
value method. However, in this way, we cannot fix the values of the physical parameters in
advance, and if we just need to compute the numerical solution for given values of the two
parameters, we have to define an iterative extension of the transformation method. Thus,
in this paper, for the problem under study, we define a non-ITM and an ITM based on Lie
groups scaling invariance theory.

Keywords: Blasius problem; scaling invariance properties; non-iterative and iterative
transformation methods; BVPs on infinite intervals

MSC: 65L10; 34B15; 65L08

1. Introduction
It was Prandtl [1] who in 1904 fixed the terms for the validity of boundary layer theory.

Within this theory, the problem of determining the steady two-dimensional motion of fluid
flow past a flat plate placed edge-ways to the mainstream was formulated in general terms
and investigated in detail by Blasius [2]. The engineering interest was to calculate the shear
at the plate (skin friction), which leads to the determination of the viscous drag on the plate
(see, for instance Schlichting and Gersten [3]). The Blasius problem is a non-linear boundary
value problem (BVP) defined on the semi-infinite interval [0, ∞). It is possible to prove
(see Weyl [4]) that the unique solution of the Blasius problem has a positive second-order
derivative, which is a monotone decreasing function on [0, ∞) and approaches zero as η

goes to infinity. The governing differential equation and the two boundary conditions at
the origin in the Blasius problem are invariant with respect to a scaling group of point
transformations and this has several consequences. From a numerical viewpoint, a non-
iterative transformation method (ITM) reducing the solution of the Blasius problem to
the solution of a related initial value problem (IVP) was defined by Töpfer [5]. From a
theoretical point of view, by applying the scaling invariance properties, a simple existence
and uniqueness Theorem was given by J. Serrin (see Meyer [6]: pp. 104–105). Furthermore,
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let us note here that the mentioned invariance property is essential to the error analysis of
the truncated boundary solution offered by Rubel [7]. Recently, the Blasius problem was
used, by Boyd [8], as an example, where some good analysis allowed researchers of the past
to solve problems, governed by partial differential equations, which might be otherwise
have been impossible to face before the invention of the computer.

The present paper is concerned with the numerical solution of a Blasius problem with
extended boundary conditions, as described by White [9], Klemp and Acrivos [10], Fang
and Lee [11], and Lu and Law [12]. This problem allows us to define both a non-ITM,
where we are forced to accept the transformed values of the two physical parameters,
and an ITM, where we can fix the values of interest of these parameters and compute the
numerical solution by using the invariance properties of an extended scaling group of
point transformations. Therefore, we are able to illustrate the differences between the two
proposed numerical methods.

Non-ITMs have been applied to several problems of practical interest within the
applied sciences. First of all, a non-ITM was applied to the Blasius equation with a slip
boundary condition, arising within the study of gas and liquid flows at the micro-scale
regime [13,14]. A non-ITM has also been applied to the Blasius equation with moving
wall, as considered by Ishak et al. [15], surface gasification, as studied by Emmons [16]
and recently by Lu and Law [12], and slip boundary conditions, as investigated by Gad-el-
Hak [13] and Martin and Boyd [14]. In particular, within these applications, we found a
way to solve the Sakiadis problem non-iteratively [17,18]. The application of a non-ITM
to an extended Blasius problem has been the subject of a recent paper [19]. Furthermore,
another application has been considered for boundary layer problems with power-law
viscosity for non-Newtonian fluids (see Fazio [20]). As far as the non-ITM is concerned, a
recent review dealing with all the cited problems can be be found in ([21]).

Moreover, Töpfer’s method has been extended to classes of problems in boundary
layer theory involving one or more physical parameters. This kind of extension was first
considered by Na [22]; see also the book by Na [23] (Chapters 8–9) for an extensive survey
on this subject.

Finally, an iterative extension of the transformation method has been introduced by
Fazio for the numerical solution of free BVPs [24]. This iterative extension has been applied
to several problems of interest: free boundary problems [24]; a moving boundary hyperbolic
problem [25]; and two variants of the Blasius problem [26], namely a boundary layer
problem over moving surfaces, first studied by Klemp and Acrivos [27], and a boundary
layer problem with slip boundary conditions, which has found applications in the study
of gas and liquid flows at the micro-scale regime [13,14]. In addition (see [28]), a further
variant of the Blasius problem in boundary layer theory has recently been introduced:
the so-called Sakiadis problem [17,18]. A recent review dealing with the derivation and
application of the ITM can be be found, by the interested reader, in [29].

2. The Blasius Problem with Extended Boundary Conditions
The Blasius problem with extended boundary conditions is given in White [9], Klemp

and Acrivos [10], Fang and Lee [11], and Lu and Law [12]

d3 f
dη3 + f

d2 f
dη2 = 0

(1)

f (0) = 0 ,
d f
dη

(0) = P1 + P2
d2 f
dη2 (0) ,

d f
dη

(η) → 1 as η → ∞ ,
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where P1 = Uw
U∞

, which for Uw > 0 is positive with the same direction as the free stream

velocity and for Uw < 0 is negative opposite to the free stream velocity, and P2 =
Uslip
U∞

=(
2
P3

− 1
)

Kn,xRe1/2
x is a dimensionless parameter with Kn,x = 1

x , and Rex = U∞x
2ν . In the

current derivations, it is assumed that the positive x points in the direction of the free
stream. The slip velocity at an isothermal wall can be obtained based on Maxell’s first-order
approximation as

Uslip =

(
2
σ
− 1

)
ℓ

du
dy

|w , (2)

where σ is the tangential momentum accommodation coefficient, ℓ is the mean free path,
and the notation du

dy |w means the derivative of u with respect to y at constant w. The
dimensionless parameter γ can also be arranged as

γ =

(
2
σ
− 1

)
η99%

ℓ

δ
=

(
2
σ
− 1

)
η99%Kn,δ , (3)

where δ is the boundary layer thickness defined as δ = η99%

√
2νx
U∞

in which η99% is the
value satisfying f ′(η99%) = 0.99. It is seen from Equation (3) that this non-dimensional
parameter shows the relationship between the molecular mean free path to the boundary
layer thickness. As pointed out by the previously cited researchers, because P2 is dependent
on x, the boundary layer flow is not self-similar any more. However, since the approach
preserves the mass and momentum conservation, it is still valid to study the behaviour of
velocity and stress within the fluid.

We notice here, that the problem (1) when P1 = P2 = 0 reduces to the celebrated
Blasius problem.

2.1. The Non-ITM

In this section, we assume that we need to find the behaviour of the missing initial
condition with respect to the variation of the values of the involved parameters; that is, P1

and P2 should have several different values, but these values are not fixed in advance. The
applicability of a non-ITM to the Blasius problem is a consequence of both the invariance
of the governing differential equation and the two boundary conditions at η = 0, and
the non-invariance of the asymptotic boundary condition, as η goes to infinity, under the
scaling group of point transformations. In order to apply a non-ITM to the BVP (1) we
investigate its invariance with respect to the extended scaling group

f ∗ = λ f , η∗ = λ−1η , P∗
1 = λδ1 P1 , P∗

2 = λδ2 P2 . (4)

We find that the Blasius problem with extended boundary conditions (1) is invariant under
(4) if

δ1 = 2 , δ2 = −1 . (5)

Now, we can integrate the Blasius equation in (1) written in the starred variables on [0, η∗
∞],

where η∗
∞ is a suitable truncated boundary, with initial conditions

f ∗(0) = 0 ,
d f ∗

dη∗ (0) = P∗
1 + P∗

2 ,
d2 f ∗

dη∗2 (0) = 1 , (6)

in order to compute an approximation d f ∗
dη∗ (η

∗
∞) for d f ∗

dη∗ (∞) and the corresponding value of
λ according to the equation

λ =

[
d f ∗

dη∗ (η
∗
∞)

]1/2
. (7)
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Once the value of λ has been computed by equation (7), we can find the missed initial
condition by the equation

d2 f
dη2 (0) = λ−3 d2 f ∗

dη∗2 (0) , (8)

and the values of P1 and P2 by the relations

P1 = λ−2
1 P∗

1 , P2 = λ2P∗
2 . (9)

Moreover, the numerical solution of the original BVP (1) can be computed by rescaling the
numerical solution of the IVP. In this way, we obtain the solution of a given BVP by solving
a related IVP. Then, in this author’s opinion, the computational complexity to solve the
problem at hand will be greatly reduced.

Let us notice here that the used initial condition
d2 f ∗

dη∗2 (0) equal to one might be replaced

by any value different from zero on the condition that this choice is taken into consideration
in the subsequent analysis. The value one was chosen by this author in order to simplify
the initial conditions used (see (8)).

2.2. The ITM

In this section, we assume that we need to compute the numerical solution for the
given values of the involved parameters; that is, P1 and P2 are now fixed. We need now to
consider the invariance of the initial conditions with respect to the extended scaling group of
point transformations

f ∗ = λ f , η∗ = λ−1η , h∗ = λσh . (10)

This new scaling group involves the scaling of the fictitious parameter h that will be used
to force the initial conditions to be invariant. Now, we can integrate the Blasius equation in
(1) written in the star variables on [0, η∗

∞], where η∗
∞ is a suitable truncated boundary, with

initial conditions

f ∗(0) = 0 ,
d f ∗

dη∗ (0) = h∗2/σP1 + h∗−1/σP2 ,
d2 f ∗

dη∗2 (0) = 1 , (11)

in order to compute an approximation d f ∗
dη∗ (η

∗
∞) for d f ∗

dη∗ (∞) and the corresponding value
of λ again by Equation (7). Once the value of λ has been computed by Equation (7), we
can find the missed initial condition again from Equation (8). In the ITM, we proceed as
follows: We set the values of P1, P2, h∗, σ and η∗

∞ and integrate the IVP on [0, η∗
∞]. Naturally,

choosing h∗ arbitrarily, we do not obtain the value h = 1; however, we can apply a root-
finder method like bisection, secant, regula-falsi, Newton, or quasi-Newton root-finder
because the required value of h can be considered to be the root of the implicitly defined,
transformation function

Γ(h∗) = λ−σh − 1 . (12)

Of course, any positive value of σ can be chosen, and in the following, for the sake of
simplicity, we set σ = 10. Moreover, as a termination criterion for our root-finder, we used
|Γ(h∗)| < Tol with Tol = 10−5.

3. Numerical Results
In this section, we report the numerical results computed with our non-ITM and ITM.

To compute the numerical solution, we used the eighth-order Runge–Kutta method (see
Butcher [30] (p. 180) for details), with constant step size.
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First of all, we start with the results obtained by the non-ITM. In Table 1, we report
the chosen parameter values, the computed values of the involved parameters, and the

missing initial condition d2 f
dη2 (0). As can easily be seen from the results listed in Table 1,

we are not in a position to plot the data by fixing one of the two parameters, usually P1,
and plotting the missing initial condition versus the other parameter. Of course, this is a
drawback of our non-ITM. However, when we are required to produce just these kinds of
plots, we can apply the described ITM.

Table 1. Numerical data and results.

P∗
1 P∗

2 P1 P2
d2 f
dη2 (0)

0.25 0.25 0.140225769 0.333807506 0.42007973468
0.5 0.5 0.241979004 0.336675506 0.33667550559

0.75 0.75 0.309184205 1.168108665 0.26468787856
1 1 0.353764405 1.681291175 0.21041233684

1.5 1.5 0.405947260 2.883381325 0.14078861396
2 2 0.433836425 4.294197226 0.10102852811

2.5 2.5 0.450478633 5.889425257 0.07648940496
5 5 0.481068451 16.119500068 0.02984388156

We report now the numerical results obtained by the ITM. As a root-finder, we applied
the simple bisection method with the termination criterion |Γ(h∗)| < Tol with Tol = 10−5.
In Table 2, we report a sample iteration of the bisection method.

Table 2. Bisection method iterations for P1 = 0.5 and P2 = 0.

h∗ λ Γ(h∗)

0.75 −0.424804078
1.75 0.118076477
1.25 1.389163618 −0.100177989
1.5 1.466575876 0.022790586

1.375 1.425023536 −0.035103656
1.4375 1.445108710 −0.005265147
1.46875 1.455672550 0.008983786

1.453125 1.450347802 0.001914850
1.4453125 1.447717501 −0.001661237
1.44921875 1.449029969 0.000130281

1.447265625 1.448373064 −0.0007646088
1.4482421875 1.448701349 −0.0003169467
1.44873046875 1.448865617 −0.0000932785

1.448974609375 1.448947782 0.0000185148
1.4488525390625 1.448906697 −0.0000373785
1.44891357421875 1.448927239 −0.0000094310

Figure 1 shows the behaviour of the missing initial condition versus P1 with three
values of the other parameter, namely P2 = 0, 1, 2.

As an example, Figure 2 shows the solution of the Blasius problem with extended
boundary conditions in the particular case when we set P∗

1 = P∗
2 = 1. For the results shown

in this figure, we used ∆η = 0.001 and η∗
∞ = 10. Let us notice here that, by rescaling, we

obtain η∗
∞ < η∞, and this is convenient for the user because it means that we need to make

less computational effort to achieve the wanted numerical solution.
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Figure 1: Numerical results of the missing initial condition versus P1, here P2 =
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Figure 1. Numerical results of the missing initial condition versus P1. P2 = 0, 1, 2.
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Figure 2: Numerical results of the non-ITM for (1) with P1 = P2 = 1. The
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this way, we cannot fix in advance the physical parameters, and if we need just to

compute the numerical solution for given values of the two parameters we have to

apply an iterative extension of our TM. Let us notice, here, that an alternative way

to face the above essay is to consider tabulated values of the quantities of interest

and then apply some kind of interpolation in order to find the wanted quantities

for the chosen values of the involved parameters.

In this appendix we list the script files, written in MATLAB, related to the
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Figure 2. Numerical results of the non-ITM for (1) with P1 = P2 = 1. The starred variables problem
and the original problem solution components found after rescaling.

As mentioned before, the case P1 = P2 = 0 is the Blasius problem. In this particular
case, our non-ITM reduces to the original method defined by Töpfer [5], and the computed
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skin friction coefficient value, namely 0.469599988361, obtained with ∆η = 0.0001 and
η∗

∞ = 10, is in very good agreement with the values available in the literature (see for
instance the value 0.469599988361 computed by Fazio [31] by a free boundary formulation
of the Blasius problem).

4. Concluding Remarks
The main contribution of this paper is the extension of the non-ITM, proposed by

Töpfer [5] and defined for the numerical solution of the celebrated Blasius problem [2], to
a Blasius problem with extended boundary conditions. This method, which makes use
of the invariance of two physical parameters, allows us to numerically solve the Blasius
problem with extended boundary conditions by solving a related IVP and then rescaling the
obtained numerical solution. However, in this way, we cannot fix the physical parameters
in advance, and if we just need to compute the numerical solution for the given values
of the two parameters, we have to apply an iterative extension of our TM. Let us notice,
here, that an alternative way to face the above essay is to consider tabulated values of the
quantities of interest and then apply some kind of interpolation in order to find the wanted
quantities for the chosen values of the involved parameters.

In the Appendix A we list, for the reader convenience, the MATLAB (latest v. R2024b)
script files used to implement the numerical methods defined in the previous sections.

Funding: The research for this work was partially supported by the University of Messina and by the
GNCS of INDAM.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declare no conflicts of interest.

Appendix A
In this appendix we list the script files, written in MATLAB, related to the non-ITM. Those

concerning the ITM can be easily obtained from these. Let us start with the main algorithm:

% This is main.m
% Program to compute numerical approx for a
% Blasius problem with extended BCs.
% (c) Riccardo Fazio, October 24, 2024
% (c) Riccardo Fazio, rfazio@unime.it

clear all; %help Topfer; % Clear memory and print header
%* Set parameters
P1 = 1
P2 = 1

%* Set initial conditions.clc
c = [0 P1+P2 1]’;

time = 0;

%* Loop over desired number of steps using specified
% numerical method.
tmax = 10;
tau = 0.001;
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tthplot(1) = 0.;
cchplot(:,1) = c;
n = floor(tmax/tau);
for i=2:n+1
%* Runge-Kutta order 4 or 8 scheme.
% c = rk4(c,time,tau,‘Blasius’);

c = rk8p180(c,time,tau,‘Blasius’);
cchplot(:,i) = c;
time = time+tau;
tthplot(i) = time;

end

%* Graph the trajectory.
figure(1); clf; % Clear figure 1 window and go forward
plot(tthplot,cchplot(2,:),‘r.-’,‘linewidth’,1.1);
hold on plot(tthplot,cchplot(3,:),‘r.-’,‘linewidth’,1.1);

xlabel(‘e’); grid;
text(2,0.5,‘ddf*’);
text(6,2.5,‘fd*’);

cchplot(2,n+1)
d = −1
plambda = cchplot(2,n+1)^(1/(1−d))
tthplot = tthplot*plambda^(−d);
cchplot(3,1)*plambda^(2*d−1)
P1 = P1*plambda^(2*d)
P2 = P2*plambda

plot(tthplot,cchplot(2,:)*plambda^(d−1),‘b.-’,‘linewidth’,1.1);
plot(tthplot,cchplot(3,:)*plambda^(2*d−1),‘b.-’,‘linewidth’,1.1);
%legend(‘c1’,‘c2’,‘c3’,2)
text(14,0.3,‘ddf’);
text(14,1.3,‘fd’);

and, finally, we need also the Blasius model script file:

function dy = Blasius(y,t)
dy = zeros(3,1); % a column vector
dy(1) = y(2);
dy(2) = y(3);
dy(3) = −y(1)*y(3);
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