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Abstract

This paper is concerned with adaptive stiff solvers at low accuracy and complexity for systems of ordinary differential equations.
The considered stiff solvers are: two second order Rosenbrock methods with low complexity, and the BDF method of the same
order. For the adaptive algorithm we propose to use a monitor function defined by comparing a measure of the local variability of
the solution times the used step size and the order of magnitude of the solution instead of the classical approach based on some
local error estimation. This simple step-size selection procedure is implemented in order to control the behavior of the numerical
solution. It is easily used to automatically adjust the step size, as the calculation progresses, until user-specified tolerance bounds
for the introduced monitor function are fulfilled. This leads to important advantages in accuracy, efficiency and general ease-of-use.
At the end of the paper we present two numerical tests which show the performance of the implementation of the stiff solvers, with
the proposed adaptive procedure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The main concern of this work is to study the accuracy, complexity and stability properties of the most promising
solvers used for the numerical integration of stiff systems of ordinary differential equations (ODEs) written here,
without loss of generality, in autonomous form:

dc 0
€ R, tel

ar s tmax |, (1.1

where ¢ € R" and R(¢) : R" — R".

Adaptive stiff solvers at low accuracy and complexity are of great interest in the numerical simulation of complex
mathematical models as well as in the so-called “real-time” prediction of dangerous situations. Those predictions are
within the core development of weather forecasting, nuclear plant engineering, automate control system for vehicles
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(airplanes, cars or shuttles), etc. Three-dimensional advection—diffusion—reaction systems are examples of complex
mathematical models. One of the simplest numerical approaches for the solution of these models is the so-called
operator-splitting where the time evolution of the advection—diffusion part of the system is uncoupled with respect to
the reaction part (see, for more details on this topic, the concluding section).

Adaptive ODE solvers can be used to automatically adjust the step size, as the calculation progresses, until a user-
specified tolerance is reached. This gives the user control in specifying only the desired tolerance without the need of
choosing and changing step value during the calculation.

In the quest for efficient numerical solution of initial value problems (IVPs) governed by ODEs the question of
variable step-size selection has been a fundamental one. Accepted strategies for variable step-size selection are based
mainly on the inexpensive monitoring of the local truncation error:

(A1) Milne’s device in the implementation of predictor-corrector methods;

(A2) embedded Runge—Kutta methods developed by Sarafyan [14], Fehlberg [8], Verner [19] and Dormand and Price
(4]

(A3) Richardson local extrapolation [2], as reported by Hairer et al. [9, pp. 228-233].

Moreover, different viewpoints have been also considered in the specialized literature. Promising approaches are listed
below:

(B1) residual (or size of the defect) monitoring, proposed by Enright [5], see also his survey paper [6];
(B2) monitoring the relative change in the numerical solution as discussed by Shampine and Witt [16]. This usually
leads to significant advantages in accuracy, efficiency and general ease-of-use.

The simple and inexpensive approach to the adaptive step-size selection, considered here, is to require that the change
in the solution is monitored in order to define a suitable local step size. This leads to a simpler algorithm than the
classical approaches as shown in detail in Sections 3—4.

The paper is organized as follows. In the next section, we focus attention on two second order solvers that have
been found particularly useful for dealing with stiff IVPs. In fact, the considered methods are both A- and L-stable.
The central core of the paper is Section 3, where we define an adaptive step-size selection procedure and explain
the meaning of the related monitor function. Two test problems are used in Section 4 to assess the accuracy of the
algorithms resulting from the interplay of the numerical methods and the adaptive procedure. The last section is devoted
to discuss future direction of research within the general topic of three-dimensional advection—diffusion—reaction
models.

2. The stiff solvers

Stiffness in the numerical solution of IVPs for ODEs of type (1.1) occurs when the system of differential equations
involves two or more very different scales of the independent variable on which the dependent variables are changing.
Explicit numerical methods are unsuitable to be used in this case, because too small time steps and too long calculation
times are necessary to resolve the solution variation on the smallest scale. Hence, the universal choice for stiff problems
is to apply implicit methods.

In this section we consider stiff solvers for the numerical approximation of the solutions of the autonomous system
(1.1). In particular, the considered methods may be applied to advection—diffusion—reaction models, so that the following
criteria should be fulfilled by the solvers:

low accuracy, because of the uncertainty of the available data;

low complexity, due to the huge complexity of the considered problems;

A- and L-stability, that is, stability for large step sizes, and the capacity to follow whatsoever fast transient behavior
of the solution;

positivity, meaning that positive solutions should be approximated by positive values;

in the case of mass balance models, mass conservation must be preserved in the computational domain.
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2.1. The Rosenbrock methods

In general, the numerical methods for stiff problems use some implicit discretization formulae for reasons of numerical
stability. As a consequence, we have to solve a nonlinear system and to this end, the most reliable approach is to apply
Newton’s method, which demands that the user specifies the Jacobian matrix which is evaluated at each iteration. One
possibility to get low complexity for a stiff solver is to avoid these iterations. This is the simple idea for introducing
the Rosenbrock methods, which implement the Jacobian matrix directly into the numerical formula rather than within
the iterations of Newton’s method. To explain how this is achieved, let us consider the simple implicit Euler method

Ml =" + A"R(CMY, 2.1
where At" = "1 — " for all integer n, and apply only one iteration of Newton’s method, so that
I =c"+k,  k=A"R(") + A"k, 2.2)

where J is the Jacobian matrix given by the derivatives of vector function R with respect to ¢ evaluated at time ". In
(2.2) we have to solve a linear system of algebraic equations with mass matrix I — Ar"J (here and in the following /
is the identity matrix of order n), in which an increment function k appears, rather than a system of nonlinear equations
as in (2.1). However, (2.2) retains the A- and L-stability of the implicit Euler method.

In general, s-stage Rosenbrock methods have the following form [10, p. 111]:

K
Cn+1 ="+ Zbikis
i=1

i—1 i
ki =At"R Cn—i-zocijkj —i—AanZéijkj,
j=1 j=1

where s and the coefficients b;, o;; and J;; are chosen to obtain a desired order of consistency and suitable stability
properties. In particular, we consider the methods where 6;; = ¢ fori = 1,2, ..., s; this implies that s linear systems
with the same mass matrix, that is I — 0At" J, have to be solved at each integration step of the s-stage method, and
results in a very low complexity because we can use the same matrix factorization for each of the ;. For this reason,
Rosenbrock methods are called linearly implicit. When s = 1, we obtain the above linearized implicit Euler formula,
for s =2 we have an infinity of second order Rosenbrock methods

C"+1 =c" 4+ biky + baky,
ki = A" R(c™) + At"0Jkq,
ko = At"R(c" + o01ky) + At" 0210k + At" 0Tk, 2.3)

which have to verify the order conditions
bi+by=1, by +)=3—06.
Moreover, if we apply (2.3) to the scalar stability test problem ¢’ = Ac, it provides the numerical solution

14+ (1 =28)z+ (6> =20+ 1/2)72
(1 —0z2)?

MM =p@)e", @)= . 2=A"
so that the above methods are A-stable for 524—1‘ and L-stable, that is lim;_, o p(z) =0, if and only if 6 = 1 £ \/LE
Numerical tests performed by Verwer et al. [21] pointed out that the value of 6 =1 4 «/LE is the more convenient from a

stability viewpoint, so that we will use only this value. Here, and in the following, the " notation indicates differentiation
with respect to ¢.
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The first method, we would like to consider, is the one chosen by Verwer et al. [21] and called ROS2:

M ="+ Lk + ko),
ki =At"R(c™) + At"o0Jky,
ky = A" R(" + ki) — 2A1"STk; + A" STk (2.4)

obtained by the chosen parameters
bi=1—0by, o =1/2by), 07 = —(3/b2 with by = %

Keeping in mind the low complexity requirement, a different second order Rosenbrock method was chosen by Shampine
and Reichelt [15]:

Cn+1 — cn +k2,
ki = AtnR(Cn) + At"oJky,
ky = At"R(c" + k1) — A" 5Ty + A" 0Jks, (2.5)

corresponding to the following parameters:
by=0, by=1, oy =3 =5,

which has a very low complexity. This method will be denoted henceforth by ROSE2. We decided to implement both
methods because ROS2 represents the method used within huge computations for air pollution models and ROSE?2 the
state-of-the-art method.

2.2. The BDF method

BDF (backward difference formulas) methods, introduced by Curtiss and Hirschfelder [3], are multistep methods
suitable to cope with stiff problems and fast transient behavior of solutions [9, pp. 350-352]. They represent a class of
implicit linear multi-step methods with regions of absolute stability large enough to make them relevant to the problem
of stiffness.

In this paper, we are interested on methods at low order of accuracy. Then, we consider the second order BDF method
with variable time steps (BDF2V)

ko™t 4 K1t + 1o = R(MH, (2.6)
where
2A1" + At A" + At A"

= s K1 = e e— Ky = .

At (A" + A1) ! A=A 2 A=A + A1
which generalizes the A- and L-stable second order BDF method with fixed step size.

The BDF2V method is a two-step one, hence a one-step method has to be applied to the first time step. Assigning the
value ¥ at initial time °, in order to obtain the value of ¢! at time ¢! =% + Ar°, we used the implicit Euler’s method

applied with iterations of Newton’s method. In this way, the order of consistence and the stability of the BDF2V method
are left invariant.

Ko

3. A simple adaptive step-size strategy

In this section, we present a simple adaptive procedure for determining the local integration step size according to
user-specified criteria. Given a step size Ar”" and an initial value ¢" at time ¢", the method computes an approximation
"1l at time "+ =" + A". Then we can define the following monitor function:

le" ! — e

ol +em

n
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where ¢); > 0 is of the order of the rounding unit, so that we can require that the step size is modified as needed in
order to keep #" between chosen tolerance bounds, say 0 < #,;, <#" <k The basic guidelines for setting the step
size are given by the following algorithm:

(1) Given a step size Ar" and an initial value ¢ at time ", the method computes a value ¢"*! and, consequently, a
monitor function " by the above formula.

(2) If Npin <H" <hpays then 1" is replaced by " + At”; the step size A" is not changed and the next step, subject to
the check at Point (6), is taken by repeating Point (1) with initial value ¢ replaced by ¢"*+1.

(3) If " < pin» then 1" is replaced by " + Ar"* and At” is replaced by pAr"™ where p > 1 is a step-size amplification
factor; the next integration step, subject to the checks at Points (5) and (6), is taken by repeating Point (1) with
initial value ¢” replaced by ¢"*1.

(4) If 1" > Nax. then ¢ remains unchanged; At" is replaced by gAr”, where 0 < ¢ < 1 and the next integration step,
subject to the check at Point (5), is taken by repeating Point (1) with the same initial value ¢".

(5) If Atmin <At" < Atpax, return to Point (1); otherwise Az” is replaced by Afpax if At > Atpax or by Atpip if
At" < Atpin, then proceed with Point (1).

(6) If t" > fmax, then we set " = fmax, and Ar" = tyax — 1.

So that the user has to define the following values:

Af9 the initial step size;

Atmin, Afmax minimum and maximum values of the step that can be used;
p step amplification factor;

o step reduction factor;

Nmin> Mmax lower and upper bounds for the tolerance.

A crucial point for any adaptive approach is that the user must set a suitable initial time step. However, with our approach
this is not an issue: cf. the results reported in the next section where we used Ar” = 0.5Afmax. Moreover, large enough
tolerance intervals for A" and #" should be used, so that the adaptive procedure does not get caught in a loop, trying
repeatedly to modify the step size at the same point in order to meet the bounds that are too restrictive for the given
problem. Note that, in general, the step size should not be too small because the number of steps will be large, leading
to increased round-off error and computational inefficiency. On the other hand, Aty,x should not be too large because
local truncation error will be large in this case.

In order to explain the meaning of the monitor function we recall the definition of 1":

I ol

et e

n
" =l

and note that this can be considered as a measure of the suitability of the used step size to deal with the considered
IVP. In fact, we can write

A"
el +em”

dc

dr

w ”Cn-i-l _ Cn” _ ”Cn—H _ Cn” A" N

el +em A el +em —

")

where we consider

as a measure of the increase or decrease of the solution, A¢” as the grid resolution, and ||c”* || 4 &y the order of magnitude
of the solution, so that in the above formula the derivative times grid resolution is compared with the order of magnitude
of the solution. When the numerical solution increases or decreases too much, our algorithm chooses to reduce the time
step. On the other hand, if the solution slowly varies with respect to the grid resolution, then the step size is unchanged
or magnified.

dc "
dr
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We note that our adaptive approach is based on implementation of only one numerical method (of second order
ROS2, ROSE2 or BDF2V in our case) that, in order to advance the computation, uses two numerical approximations,
obtained at two following time steps.

4. Test problems and numerical results

In this section we consider two test problems and the related numerical results. For both tests the two Rosenbrock
methods gave very similar numerical results, so that in the following we shall present only graphical representation of
those obtained by the ROS2 method.

4.1. A scalar flame propagation problem

We consider first a simple scalar case within the field of flame propagation [13]
d=c*1—¢), te[0,2-10%, 4.1)
with initial condition
c(0)=10"%. 4.2)

This problem has a transient at the middle point of the interval of integration: in fact, the solution changes from being
no-stiff to stiff, to become no-stiff again afterwards. For ¢ <1 the governing equation is practically ¢’ = ¢> whose
solution c(t) =1/ (10* — 1) becomes infinite at 7 = 10*; but the factor 1 — ¢, on the right-hand side, does not allow the
solution to become greater than 1. So that at 7 = 10* we got a transition from ¢ <1to ¢ & 1.

This problem is reported here because of the erratic behavior of the Rosenbrock methods with high values of the
tolerance #,,, - Figs. 1-3 show the numerical results obtained with our adaptive step-size algorithm. These figures show
the numerical solution in the top frame, the step-size selection in the middle frame, and the monitor function in the

©05f ]
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+ 3000 b
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Fig. 1. The flame propagation problem solved by the ROS2 method. Here, we set 17,,,x = 10-L
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Fig. 2. The flame propagation problem solved by the ROS2 method. In this case, we used ;. =95 - 1072,
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Fig. 3. The flame propagation problem solved by the BDF2V method with #,,.x = 10~
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Fig. 4. BDF2V method: detail on the transition point. Top-left: ax =2 - 10~ Top-right: ;a5 = 10~ 1. Bottom-left: 1,4 =5 - 10~2. Bottom-right:
=25-1072.

"mux

bottom frame. It is easily seen in Fig. 1 that, for large tolerances, the transition point is miscalculated by Rosenbrock
methods. Even with #7,,,,, = 5 - 1072 the transition point is calculated after r = 1, as shown by Fig. 2.

As far as the adaptive parameters are concerned, we used Afpin = 0.0005, Afmax = 5000, p = 50, ¢ = 0.5, and
Nmin = 0.1 - 4. for all methods. In order to obtain the solution shown in Fig. 1, the algorithm requires 141 steps
for ROS2 method plus 13 rejected steps. Moreover, the method uses a minimum step size min, {Ar"} = 0.3052. The
solution shown in Fig. 2 was obtained after 285 steps by ROS2 plus 14 rejected steps and min,, {At"} =0.1526. On the
other hand, 150 steps, plus 13 rejected, were used by the BDF2V method to compute the results shown in Fig. 3.

A comparison can be made with the steps used by the two stiff methods implemented within the MATLAB ODE suite
by Shampine and Reichelt [15]. As reported by Moler [12], by using a relative error tolerance of 1073, the ode23s
routine used only 55 steps and the ode1l5s one 103 steps; but we do not know how many rejected steps were used
in those cases. As it is easily seen, our step selection strategy is more expensive with respect to the state-of-the-art
software but our algorithm is simpler and faster with respect to the algorithm implemented in the MATLAB suite.

We conclude this test by reporting the results displayed in Fig. 4 where we focus our attention on the transition point,
proposing a simple accuracy test by comparing the numerical results obtained for three successive halving of the value

Of Nmax -
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4.2. A simple air pollution model

In this test we illustrate the mass action law by three reactions between oxygen O, atomic oxygen O, ozone O3,
nitrogen oxide NO and nitrogen dioxide NO,. It is important, first, to consider the primary chemical reactions that are
involved:

NO, + "Y' No + 0

0+ 0,205
NO + 03 8 0, + NO,

The first photochemical reaction says that during the light hours, due to the solar radiation indicated here by hv, NO;
is photo-dissociated into NO and O; this reaction is regulated by u, (t) as specified below. We assume that the oxygen
concentration O3 is constant, which is a realistic hypothesis.

Setting the concentrations ¢; = [O], ¢ = [NO], ¢3 = [NO;] and ¢4 = [O3], a simple model used by Verwer et al.
[20] for the air pollution in the lower troposphere is given below:

) =y ()3 — e,

ch = py(t)ez — pzcacs + 5,

3 = pzcacq — piy(1)e3,

Cy = [hCl — H3C2C4. 4.3)
The concentrations are given in molecules for cm® and time in seconds. Note that , is the total number of oxygen
molecules per cm? and as a consequence is much larger than (1) and p5. Moreover, a constant source term s; is used

to simulate the emission of nitrogen oxide.
The reported numerical results use the initial conditions

ct®)=10,1.3-108,5-10'",8. 10",
and the following involved parameters:

) = 10~40 night-hours: 8 p.m.-4 a.m.,
Fit) =1 1075 7 sec® day-hours: 4 a.m.-8 p.m.,

t=10°, p3=107"1% 5 =10°,

where

sec(t) = (sin (%(rh — 4)))042

and
th =th —24[th/24], th=1/3600,

here | z| stands for the floor function.

Fig. 5 shows the results for a period of five days, that is, from 4 a.m. (° = 14 400) up to 4 a.m. of the next five days
(tmax = 504 000), obtained with ROS2, ROSE2 and BDF2V methods.

For the adaptive algorithm we set ,,,, = 1073 and #,,;, =0.1 - x> 0 =50, 6 =0.5, Atax = 1000 and Aty =.1. At
this value of #,,,, the three methods compute the same solution within the used graphical scales. The BDF2V method
requires 21 255, plus 102 rejected, steps; whereas the ROS2 uses 21 343 steps plus 106 rejection. Both methods apply
the maximum allowed step size Atp,x and min, {At"} = 1.5259.

Figs. 6 and 7 show the step-size selection and the monitor function for the ROS2 and BDF2V methods, respectively.

This problem is considered because we would like to show how our adaptive approach is able to deal with a system
and how the considered numerical methods preserve positivity, see the solution’s first component in Fig. 5, and mass
conservation.
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Fig. 5. The air pollution model: numerical solution obtained by ROS2, and BDF2V.

Molecular conservation mass law associated with R(c) in system (4.3)

4

D BiRi(c)=0 with >0, i=1,....4

i=1

implies that for every time, the mass of the associated set of species is conserved:

4

Z Bici(t) = constant.

i=1

Two mass laws for this chemical model exist:

)+ 50 +c4()=0 and @)+ c5(t) =52,
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Fig. 7. The air pollution model: BDF2V step-size selection (top) and monitor function (bottom).

hence [O] + [NO3] + [O3] is a conserved quantity while [NO] 4 [NO;] grows with s>¢. The first mass law shows that
the quantity c(z) + ¢3(¢) 4 c4(¢) is constant in time, that is,

c1(t) + c3(0) + ca(t) = c1 1Y) + c3(°) + ca(t®) = 1.3E + 12,
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Table 1
One day relative error computed for the second mass law

Time Exact solution ROS2 ROSE2 BDF2V

04 a.m. 5.0013E + 11

12 am. 5.2906E + 11 1.0383E — 15 1.9612E — 15 2.3188E — 14
08 p.m. 5.57713E+ 11 8.7548E — 16 2.4076E — 15 2.9548E — 14
04 a.m. 5.8653E + 11 1.5384E — 04 1.5384E — 04 2.0646E — 05

then the numerical solution should verify this condition every time. Indeed, all the considered methods (ROS2, ROSE2
and BDF2V) satisfy the above condition within a relative error smaller than 1E — 12. By the second mass law the
quantity ca(t) + c3(t) grows with s»¢, then we have

ea(t) + e3(t) = st + c2(1°) + ¢3(1%) — 521,

Considering the numerical solutions and the exact relation reported above, we can calculate the relative error showed
in Table 1. It is easily seen that the considered stiff solvers with our adaptive procedure provide accurate conservation
of these mass laws.

5. Conclusions

In the introduction we reported the background for the proposed adaptive step-size strategy. Phenomena of relevant
interest, such as air pollution [20] or marine pollution [18], prey—predator evolution in ecosystems [11], etc., can be
studied by using three-dimensional advection—diffusion-reaction models. Let us consider, as an example of complex
models, a three-dimensional advection—diffusion—reaction model governed by the following system of equations:

dc

3 + V- (ve) = V- (DVe) = R(c), 5.1)

where ¢ = ¢(x, 1) withe € R" andx € Q C [R{3, t and x denote time and space variables, respectively; the advection
field v and the diffusion coefficient matrix D are, usually, supposed to be given. Let us stress that the left-hand side
of (5.1) has a scalar nature, that is, each component of the field variable ¢ is governed by a scalar partial differential
equation, in contrast with its right-hand side where all the components are coupled. Moreover, the time evolution of
each component of the left-hand side is determined by a partial differential equation, whereas the time evolution of the
right-hand side has a local (in space) dependence. For the above reasons one of the simplest numerical approaches for
the solution of (5.1) is the so-called operator-splitting [17] where the time evolution of the advection—diffusion part of
the system is uncoupled with respect to the reaction part.

Our main topic, that is, the adaptive implementation of numerical methods, is a fundamental one also for the numerical
solution of partial differential problems. Indeed, the superiority of numerical schemes using moving mesh methods
against schemes with constant step sizes has been proved for several classes of problems: see Budd and Collins [1] for
parabolic problems with blowing up solutions and Fazio and LeVeque [7] for hyperbolic conservation laws.
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