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1 Introduction

Starting from the beginning of the last century several publications were devoted to study the
dynamics of liquid flow into a capillary, leading to the derivation of the celebrated Washburn
equation, the Bosanquet model, and, more recently, to the SNC model by Szekely, Neumann
and Chuang. Washburn [13] considered the liquid penetration as being determined by a balance
among capillarity, gravitational and viscous forces and used Poiseuille profile for the velocity.
The Washburn equation has been confirmed by a lot of experimental data and also by molecular
dynamic simulations; it is still considered as a valid approximation, although it fails to describe
the initial transient, since it neglects the inertial effects which are relevant at the beginning of the
process. Those inertial effects were considered in a model proposed by Bosanquet [2]. The SNC
model introduced by Szekely et al. [12] takes into account also the outside flow effects, including
within the inertial terms an apparent mass parameter. Meanwhile, the research on the dynamics
of capillary phenomena and their applications was blooming and several reviews appeared within
the specialized literature: see Dussan [9], de Gennes [6], Leger and Joanny [11], Clanet and Quéré
[5], Zhmud et al. [14], the recent book by de Gennet et al. [7] and the references quoted therein.

This paper was written in order to introduce a simple one-dimensional model for two immiscible
liquids penetration, see for instance Chan and Yang [4] or Blake and De Coninck [1], and to report
on preliminary numerical results for the one liquid case.

2 Mathematical modeling

With reference to figure 1, we consider a column of liquid 1, usually water, of fixed length `0
entrapped within a horizontal cylindrical capillary of radius R and finite length L. At the left
end of the capillary we have a reservoir filled with a penetrant liquid 2. We are interested to
model the dynamics of both liquids under the action of the surface tension. For the validity of the
one-dimensional analysis we assume that both menisci can be approximated by spherical caps and
this implies that the Weber, Bond and capillary numbers are small, that is We = 2ρRU2/γ � 1,
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Figure 1: Draft of a cylindrical capillary section.

Bo = 4ρgR2/γ � 1, and Ca = µU/γ � 1, where ρ, γ, and µ are the liquid density, surface tension
and viscosity, respectively, g is the acceleration due to gravity, and U is the average axial velocity
within the capillary. Of course, we should have that R/L � 1, a quasi-steady Poiseuille velocity
profile, and a dynamic contact angle simplification. The Newtonian equation of motion can be
written as follows

d(mU)
dt

= Fdrive − Fdrag (1)

where m(t) is the mass of the two liquids, t is the time and Fdrive, and Fdrag are the drive and the
drag forces respectively. We can express the average axial velocity as U = d`/dt, where ` is the
moving liquid-liquid interface coordinate, so that the momentum can be specified as

d(mU)
dt

= m
dU

dt
+

dm

dt
U

= πR2 (ρ1`0 + ρ2`)
d2`

dt2
+ πR2ρ2

(
d`

dt

)2

(2)

where ρ1 and ρ2 are the densities of the two liquids. Moreover, from the Navier-Stokes model
written in suitable cylindrical coordinates and applying no slip boundary conditions at the capillary
wall, it is possible to derive the Poiseuille parabolic velocity profile

u(r) =
1
4µ

∆p

∆z

(
R2 − r2

)
, (3)

where r is the radial cylindrical coordinate. The volumetric flow rate is given by

Q =
πR4

8µ

∆p

∆z
.

For a constant area tube, Q may also be written as

Q = πR2 d`

dt
.

So that equation (3) can be rewritten in the form

u(r) = 2U

(
1− r2

R2

)
. (4)
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Then, the expression of the viscous drag force is given by

Fdrag = −2πR (µ1`0 + µ2`)
du

dr

∣∣∣∣
r=R

= 8π (µ1`0 + µ2`)
d`

dt
(5)

where µ1 and µ2 are the dynamic viscosities of the two liquids. The driving force, due here to the
surface tension only, can be defined as, see for instance Cartz [3],

Fdrive = 2πR (γ1 cos ϑ1 + γ12 cos ϑ12) (6)

where γ1 and γ12 are the surface free energies for the liquid 1-air and the liquid 1-liquid 2 interfaces,
and ϑ1 and ϑ12 are corresponding menisci contact angles. At the end of this derivation we get the
following second order differential equation

(ρ1`0 + ρ2(` + cR))
d2`

dt2
+ ρ2

(
d`

dt

)2

= 2
γ1 cos ϑ1 + γ12 cos ϑ12

R
− 8

µ1`0 + µ2`

R2

d`

dt
− paL

L− `0 − `
(7)

where c = O(1) is the coefficient of apparent mass [12], and the term paL
L−`0−` , being pa the

atmospheric pressure, is the pressure due to the entrapped gas within the capillary according to
Deutsch [8]. The equation (7), with suitable initial conditions, accounts for the displacement of
the two liquids due to the combined surface tensions action of both liquids.

3 A single liquid case and numerical results

In the simpler case of a single liquid dynamics without gas entrapment, that is `0 = ρ1 = γ1 = µ1 =
pa = 0, the equation (7), dropping also all subscripts related to the considered fluid parameters,
becomes

ρ(` + cR)
d2`

dt2
+ ρ

(
d`

dt

)2

= 2
γ cos ϑ

R
− 8

µ`

R2

d`

dt
. (8)

Moreover, within a steady flow assumption, equation (8) reduces to

`
d`

dt
=

γ cos ϑ

4µ
R (9)

that can be integrated, using the initial condition `(0) = 0, providing the solution

`2 =
γR cos ϑ

2µ
t . (10)

This is a Washburn equation, valid only for t >> tµ where tµ = ρR2/µ is a viscous time scale.
As an academic test case we report on the numerical results for the model (8) supplemented

with the following initial conditions

`(0) = 0 ,
d`

dt
(0) = 0 , (11)

and parameters

R = 0.01 , c = ρ = 2
γ cos ϑ

R
= 8

µ

R2
= 1 . (12)
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Figure 2 displays the numerical results obtained by a second order Heun’s method implemented
with an adaptive procedure developed by Jannelli and Fazio [10].

For this test case we used the following monitor function

η(t) =
|d`
dt (t + ∆tk)− d`

dt (t)|
Γ(t)

(13)

where ∆tk is the current time-step and

Γ(t) =
{
|d`
dt (t)| if d`

dt (t) 6= 0
1 otherwise .

(14)

We decided to define the above monitor function because we have found numerically that, for small
values of R, the first derivative of `(t) has initially a fast transient. More details on the adaptive
strategy and alternative monitor functions can be found in [10]. We remark here that an adaptive
approach is mandatory to resolve the fast transient, as well as to provide accurate results on the
time interval of interest. Further numerical tests, involving the parameters characterizing several
real liquids, as well as the entrapped gas pressure term, are in progress.
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Figure 2: Adaptive results for the model (8)-(11)-(12). From top to bottom: `(t), its first derivative
(shown as l1 and l2 dotted-dashed and dotted lines respectively) and the Washburn solution (solid
line); adaptive step-size selection ∆tk; monitor function η; and zoom of the initial transient.


