
Journal of Computational and Applied Mathematics 140 (2002) 331–344
www.elsevier.com/locate/cam

A survey on free boundary identi#cation of the truncated
boundary in numerical BVPs on in#nite intervals

Riccardo Fazio
Department of Mathematics, University of Messina, Salita Sperone, 31, I-98166 Messina, Italy

Received 11 September 2000; received in revised form 30 July 2001

Abstract

A free boundary formulation for the numerical solution of boundary value problems on in#nite intervals was proposed
recently in Fazio (SIAM J. Numer. Anal. 33 (1996) 1473). We consider here a survey on recent developments related
to the free boundary identi#cation of the truncated boundary. The goals of this survey are: to recall the reasoning for
a free boundary identi#cation of the truncated boundary, to report on a comparison of numerical results obtained for a
classical test problem by three approaches available in the literature, and to propose some possible ways to extend the
free boundary approach to the numerical solution of problems de#ned on the whole real line. c© 2002 Elsevier Science
B.V. All rights reserved.

MSC: 65L10; 34B15; 73C50

1. Introduction

In this survey we consider the numerical solution of boundary value problems (BVPs) for ordinary
di:erential equations (ODEs) on in#nite intervals of the type

du
dx

= f(x; u); x∈ (a;∞);

g(u(a); u(∞)) = 0; (1.1)

where u(x) is an n-dimensional vector with u‘(x) for ‘= 1; : : : ; n as components, f : [a;∞)×Rn →
Rn, a∈{R ∪ {−∞}} and g :Rn × Rn → Rn. These problems are solved numerically mainly by
introducing truncated boundaries (say x∞ and x−∞ if a= −∞) which restrict the original problem
to a large but #nite interval and imposing “suitable” boundary conditions there.
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The oldest and simplest approach is to replace the boundary conditions at in#nity by the same
conditions at chosen values of the truncated boundaries. This approach was used, for instance, by
Goldstein [22, p. 136] and by Howarth [23] in 1938 for the tabulated numerical solution of the
Blasius problem. However, to get an accurate solution a comparison of numerical results obtained
for several values of the truncated boundaries is necessary as suggested by Fox [19, p. 92] or by
Collatz [8, pp. 150–151]. Moreover, in some cases accurate solutions can be found only by using
very large values of the truncated boundary, as, for instance, for the fourth branch of the von Karman
swirling Kows where values of x∞ up to 200 were used by Lentini and Keller [26].

To overcome the mentioned diLculties of the classical approach described above, Lentini and
Keller [25] and de Hoog and Weiss [9] have suggested to apply asymptotic boundary conditions
(ABCs) at the truncated boundaries (see also the theoretical work of Markowich [28,29], Markowich
and Ringhofer [30], Schmeiser [38] and Mattheij [31]). Those ABCs have to be derived by a prelim-
inary asymptotic analysis involving the Jacobian matrix of f(x; u) evaluated at in#nity. More accurate
numerical solutions can be found by this approach than those obtained by the classical approach with
the same values of the truncated boundaries, because the imposed conditions are obtained from the
asymptotic behaviour of the solution. However, we should note that for nonlinear problems highly
nonlinear ABCs may result. Moreover, it has been noticed by J.R. Ockendon that “Unfortunately the
analysis is heavy and relies on much previous work, : : :” see Math. Rev. 84c:34201. On the other
hand, starting with the work by Beyn [3–5], the ABCs approach has been applied successfully to
“connecting orbits” problems (see also: [7,12,11,20,21,34–36]). Connecting orbits are of interest in
the study of dynamical systems as well as of traveling wave solutions of partial di:erential equations
of parabolic type (see, for the latter topic [4,20,2,27,10]).

A free boundary formulation for the numerical solution of BVPs on in#nite intervals was recently
proposed in [16]. In this approach the truncated boundary can be identi#ed as an unknown free
boundary that has to be determined as part of the solution. This eliminates the uncertainty related
to the choice of the truncated boundary. To be more explicit, assume that at least one additional
boundary condition is available

h(u(a); u(∞)) = 0; (1.2)

where h :Rn × Rn → R, then a free boundary formulation for (1.1) is given by

du
dx

= f(x; u); x∈ [a; x	];

g(u(a; 	); u(x	; 	)) = 0;

h(u(a; 	); u(x	; 	)) = 	; (1.3)

where 0¡ |	|�1, the solution of (1.3) depends on 	, that is u(x; 	), and x	 is the unknown free
boundary. A theorem concerning the uniform converge of the solution of (1.3) to the solution of
(1.1)–(1.2), as 	 goes to zero, can be found in [17]. This new formulation has already been applied
to several problems: the Blasius problem [14], the Falkner–Skan equation with relevant boundary
conditions [15], a model describing the Kow of an incompressible Kuid over a slender parabola of
revolution [16], and a problem in nonlinear elasticity [13].
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The goals of the present survey are: to recall the reasons leading to a free boundary identi#cation
of the truncated boundary, to report on a comparison of numerical results obtained for a classical
test problem by the three approaches mentioned above, and to suggest some possible ways to extend
the free boundary approach to the numerical solution of problems de#ned on the whole real line.
To this end, the paper is organized as follows. In the next section, we consider the Blasius problem,
and report on the error analysis for a truncated boundary approach to its numerical solution. The
mentioned error analysis provides the justi#cation for considering a free boundary formulation as an
e:ective way to deal with the accuracy question. In Section 3 a classical test problem is used to
show di:erences and similarities among the classical, the ABCs and the free boundary approaches.
A graphical comparison of the related numerical results suLces for our purposes. In Section 4, we
discuss some preliminary results on the extension of the free boundary approach to the numerical
solution of BVPs on the whole real line. In that section we consider also an interesting test problem
already used by Beyn [4]. Finally, the last section is devoted to concluding remarks.

2. On the free boundary approach

In this section, we use the simple Blasius problem to explain why a free boundary approach
should be e:ective.

2.1. Background

The problem of determining the steady two-dimensional motion of a Kuid past a Kat plate placed
edge-ways to the stream was formulated in general terms within the boundary layer theory by Prandtl
[32], and was investigated in detail by Blasius [6]. From the original partial di:erential model it is
possible, by a similarity analysis, to obtain the Blasius problem (for this problem the independent
variable will be denoted by � and the dependent one by f(�))

d3f
d�3 + f

d2f
d�2 = 0; 0¡�¡∞;

f(0) =
df
d�

(0) = 0;
df
d�

(�) → 1 as �→ ∞: (2.1)

The value of d2f=d�2(0) is of interest because it is involved in the de#nition of the shear at the plate
(skin friction), as de#ned by the original partial di:erential model, which leads to the determination
of the viscous drag on the plate (see for instance Schlichting [37, p. 138]). It has been proved by
Weyl [39] that the unique solution of (2.1) has a positive second order derivative, which is monotone
decreasing on [0;∞) and approaches zero as the independent variable goes to in#nity.

2.2. Truncated boundary and error analysis

In order to apply to (2.1) the truncated boundary approach we replace the boundary condition at
in#nity by the same condition applied at a given #nite value M (to simplify the notation, in this
section, the truncated boundary is denoted by M according to Rubel [33]). So that, we de#ne fM (�)
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Table 1
The “it” column indicates the number of iterations. Free bound-
ary and missing initial condition (third and fourth columns, re-
spectively)

	 it �	 ≈ d2f=d�2(0)

1D−3 7 4.62 0.4699
1D−4 7 5.24 0.4697
1D−5 8 5.77 0.4697

as the solution of

d3fM
d�3 + fM

d2fM
d�2 = 0;

fM (0) =
dfM
d�

(0) = 0;
dfM
d�

(M) = 1: (2.2)

The error e(�) related to fM (�) is given by

e(�) = |f(�) − fM (�)|; �∈ [0; M ]:

The following theorem de#nes an upper bound for this error.

Theorem 1 (Rubel [33]). The error related to the truncated boundary formulation of the Blasius
problem veri4es the following inequality:

e(�)6M
d2fM
d�2 (M) [fM (M)]−1:

An outline of the proof can be found in [18].
It follows from Theorem 1 that to control e(�) on [0; M ] we can modify either the value of M or

the value of d2fM=d�2(M). Commonly, the value of M is modi#ed to check the introduced error.
For instance, several increasing values of the truncated boundary could be used to compare the
numerical approximation of interest (for instance the shear value). However, as Theorem 1 shows,
for the Blasius problem the error is directly proportional to M . Motivated by this consideration the
following free boundary formulation of the Blasius problem:

d3f
d�3 + f

d2f
d�2 = 0;

f(0) =
df
d�

(0) = 0;
df
d�

(�	) = 1;
d2f
d�2 (�	) = 	 (2.3)

was introduced in [14]; here 06 	�1 and �	 is the unknown free boundary. In (2.3) meaningful
numerical results obtained by an initial value method were reported in [14].

In Table 1 some new numerical results computed by the Keller box scheme are listed [24]. To
apply the box scheme we introduce the new independent variable �= �=�	, rewrite (2.3) in standard
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form and add the equation d�	=d�= 0 to the governing system. The initial iterate for the relaxation
method is given by f(�) = �, df=d�(�) = �, d2f=d�2(�) = 1−� and �	 = 1. As a simple termination
criterion for the iteration we require that the discrete in#nite norm of the di:erence between two
successive iterations be less than a #xed tolerance, say TOL. For the numerical results of Table 1
we used TOL = 0:5 × 10−6 with 101 mesh-points.

3. A test problem for comparison

To describe the plane deKection of a pile in soil Lentini and Keller [25] introduced the following
model:

d4u
dx4 = − P1(1 − e−P2u); 0¡x¡∞;

d2u
dx2 (0) = 0;

d3u
dx3 (0) =P3;

lim
x→∞ u(x) → 0; lim

x→∞
du
dx

(x) → 0; (3.1)

where x is the distance from the top of the pile, u(x) represents the deKection of the pile, P1 and
P2 are positive material constants, and the conditions d2u=dx2(0) = 0 and d3u=dx3(0) =P3¿ 0 are
related to a zero moment and a positive shear at the origin, respectively. Moreover, for physical
reasons we may assume that

lim
x→∞

dku
dxk

(x) → 0; k = 2; 3; : : : :

In the following, for comparison, we set the following values:

P1 = 1; P2 = 1
2 and P3 = 1

2 :

Moreover, we de#ne the new variables

ui(x) = di−1u=dxi−1(x) for i= 1; 2; 3; 4;

and rewrite the original problem in standard form [1]

du
dx

= f(x; u) =




u2

u3

u4

−P1(1 − e−P2u1)


 :

3.1. Zero boundary conditions

The truncated boundary approach leads to the following zero boundary conditions (ZBCs):

u1(x∞) = u2(x∞) = 0:
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Fig. 1. Numerical solution of pile problem with ZBCs. Reprinted with permission from Lentini and Keller [25]. Copyright
c© 1998 by the Society for Industrial and Applied Mathematics. All rights reserved.

Fig. 1 shows four frames obtained by using the truncated boundary values: x∞ = 2; 4; 6 and 10,
respectively.

3.2. Asymptotic boundary conditions

Lentini and Keller [25] used (3.1) as a test problem to make evident the superiority of the ABCs
approach over the classical one. They made, in fact, a comparison between the Figs. 1 and 2: the
numerical value of u1(0) obtained by using the ZBCs is completely wrong for the smallest truncated
boundary value used, and this can be contrasted with the results found by employing the ABCs.

For the derivation of the ABCs we follow the analysis made by Lentini and Keller [25]. The
Jacobian of f is the following matrix:

df
du

=




0 1 0 0

0 0 1 0

0 0 0 1

−P1P2e−P2u1 0 0 0


 :

Note that u∞ = 0 is the only root of limx→∞ f(x; u) = 0. As a next step, we de#ne the matrix

A∞ = lim
x→∞

df
du

(x; u∞) =




0 1 0 0

0 0 1 0

0 0 0 1

−P4
4 0 0 0



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Fig. 2. Numerical solution of pile problem with ABCs. Reprinted with permission from Lentini and Keller [25]. Copyright
c© 1998 by the Society for Industrial and Applied Mathematics. All rights reserved.

with P4 = (P1 P2)1=4. Since P4
4 ¿ 0 (recall that in our case P1¿ 0 and P2¿ 0), the eigenvalues of

A∞ are given by

�‘ =P4ei(2‘−1)�=4; ‘= 1; 2; 3; 4;

and the matrix of related eigenvectors by the matrix product RS, where

R=




1 0 0 0

0 P4=
√

2 0 0

0 0 iP2
4 0

0 0 0 P3
4=
√

2




and

S =




1 1 1 1

(1 + i) −(1 − i) (1 + i) (1 − i)
1 −1 1 −i

−(1 − i) (1 + i) (1 − i) −(1 + i)


 :

Since �1 and �4 have positive real parts, after introducing the projection matrix

P+ =
[

1 0 0 0

0 0 0 1

]

the asymptotic conditions

lim
x→∞P

+(RS)−1f(x; u) = 0
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yield the ABCs at the truncated boundary

u2(x∞) + P−1
4 =

√
2u3(x∞) + P−3

4 =
√

2P1[1 − e−P2u1(x∞)] = 0;

P−1
4 =

√
2u3(x∞) − P−2

4 u4(x∞) − P−3
4 =

√
2P1[1 − e−P2u1(x∞)] = 0:

3.3. Free boundary formulation

Let us consider now a free boundary formulation for problem (3.1), and rewrite the obtained free
BVP in standard form

du1

dz
= u5u2;

du2

dz
= u5u3;

du3

dz
= u5u4;

du4

dz
= − u5P1(1 − e−P2u1);

du5

dz
= 0;

u3(0) = 0; u4(0) =P3; u1(1) = 0; u2(1) = 0;

|u3(1)| + |u4(1)|= 	; (3.2)

where u5 ≡ x	 and z= x=u5. For the numerical solution of (3.2) we apply the Keller box scheme
[24]. The related details: initial iterate, termination criteria, etc., can be found by the interested reader
in [13].

A graphical comparison of the numerical solutions can be made with the help of the Figs. 1–3.
By the #rst frame of Fig. 3 it is evident that already in the case 	= 10−1 the free boundary approach
reaches a qualitative correct value of u1(0). Moreover, the numerical solutions shown on the second
and third frame of Fig. 3 are in good agreement within the common domain. On the contrary, the
#rst and second frame solutions slightly di:er on the interval [3; 6:46].

4. BVPs on the whole real line

We would like to discuss here two di:erent ways to extend the free boundary approach to BVPs
de#ned on the whole real line. For these problems we have to consider all boundary conditions
imposed at plus or minus in#nity, so that a=−∞ in (1.1)–(1.2). A free boundary formulation can
be de#ned by replacing the boundary condition (1.2) with

h(u(−x	); u(x	)) = 	:
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Fig. 3. Numerical solutions of the pile problem by the free boundary approach. Top: for 	= 10−1 we found x	 ≈ 6:46,
middle: here 	= 10−2 and x	 ≈ 8:84, and bottom: by setting 	= 10−3 we have x	 ≈ 13:13.
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Moreover, the resulting free BVP can be rewritten in standard form by setting un+1 = x	, intro-
ducing the independent variable transformation

z=
x + un+1

2un+1
(4.1)

and appending

dun+1

dz
= 0

to the governing system. The above transformation maps [ − x	; x	] to [0; 1].
Let us consider an application of the above treatment to a two-dimensional homoclinic orbit

example. The governing dynamical system is given by

du1

dx
= u2; x∈R;

du2

dx
= u1 − u2

1 + �u2 + �u1u2: (4.2)

As reported by Beyn [4], this system has two stationary points: (0; 0) and (1; 0). For #xed �¿ 0,
a supercritical Hopf bifurcation from (1; 0) occurs at �= − �, then at some �= �c(�)¿ − � the
periodic orbit becomes a homoclinic orbit with saddle point (0; 0). For more details on the bifurcation
diagram and related phase portraits details the interested reader is referred to the references reported
in [4]. Our concern here is not the study of the dynamical system by itself but the numerical
approximation of the homoclinic orbit. Therefore, according to Beyn we set the values of �= 0:5,
and �= − 0:429505849.

As far as boundary condition (1.2) is concerned, in the case of this homoclinic orbit we can
consider

h(u(−∞); u(∞)) = u2(∞): (4.3)

Then, we introduce a free boundary formulation for (4.2), rewrite the obtained free BVP in standard
form

du1

dz
= 2u3u2;

du2

dz
= 2u3(u1 − u2

1 + �u2 + �u1u2);

du3

dz
= 0 (4.4)

with boundary conditions

u1(0) = u1(1) = 0; u2(1) = 	: (4.5)
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Fig. 4. Homoclinic orbit solution by the free boundary approach.

For the numerical solution of (4.4) we apply a Keller box scheme with 1001 mesh-points. The initial
iterate for the computation is given by

u1(z) = 10z(1 − z);
u2(z) = z( 1

2 − z)(1 − z);
u3(z) = 10:

Our preliminary numerical results are computed for the case 	=−10−3 with TOL = 10−6 and are
shown in Fig. 4.

Fig. 5 can be compared with the homoclinic orbit shown by Fig. 3 in [4]. It is easily seen that a
better control of the numerical error is achieved at the free boundary x	 than at the other end of the
domain. This is also evident from Fig. 4. Moreover, connecting orbits solutions may be asymmetric
(cf. Fig. 8(a) in Beyn [4]) and therefore the above treatment could result to be too expensive from
a computational viewpoint.

A better way to deal with the error at both sides of the domain, as well as with asymmetric
solutions, is to introduce two free boundaries, say un+1 = x	+ and un+2 = x	−. This can be done only
if we are able to de#ne two supplementary boundary conditions

h1(u(−∞); u(∞)) = 0; h2(u(−∞); u(∞)) = 0: (4.6)

In this case, a di:erent transformation from the one used above, namely

z=
x − un+2

un+1 − un+2
(4.7)
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Fig. 5. The homoclinic orbit in phase plane approximated on [ − 8; 8].

can be used to write the resulting free boundary problem in standard form. To this end, we have to
append the equations

dun+1

dz
= 0;

dun+2

dz
= 0

to the governing system. Note that the above transformation maps [x	−; x	+] to [0; 1].
As an example, for the homoclinic orbit considered above we can use the supplementary boundary

conditions

h1(u(−∞); u(∞)) = u2(∞); h2(u(−∞); u(∞)) = u2(−∞): (4.8)

Then, we can introduce a new free boundary formulation and rewrite the obtained free BVP in
standard form

du1

dz
= (u3 − u4)u2;

du2

dz
= (u3 − u4)(u1 − u2

1 + �u2 + �u1u2);

du3

dz
= 0;

du4

dz
= 0 (4.9)
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with boundary conditions

u1(0) = u1(1) = 0; u2(0) = 	−; u2(1) = 	+ : (4.10)

5. Conclusions

The introduction was written to orient the reader within the available numerical methods for BVPs
on in#nite intervals which replace the in#nite domains by #nite ones. Then we recalled the original
idea of the free boundary approach. In particular, this approach was conceived by considering the
numerical solution of the simple Blasius problem. We believe that the comparison of the theoretical
preliminary work, completed by graphical results, between the two classical approaches and the free
boundary formulation model of a pile in soil is of relevant interest for the inexperienced reader as
well as for the skillful researcher. Finally, in the previous section we considered a new subject,
namely the possibility to extend the free boundary approach to the large class of problems known
as connecting orbits. The reported numerical results show the validity of the free boundary approach
when applied to those problems.

In conclusion, we surveyed several motivations for considering a free boundary identi#cation of
the truncated boundary as an e:ective way to deal with the accuracy requirement in the numerical
approximation of BVPs de#ned on in#nite intervals.
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