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A free boundary approach for the numerical solution of boundary value problems (BVPs) governed by a third-order
differential equation and defined on infinite intervals was proposed recently [SIAM J. Numer. Anal., 33 (1996),
pp. 1473–1483]. In that approach, the free boundary (that can be considered as the truncated boundary) is unknown
and has to be found as part of the solution. This eliminates the uncertainty related to the choice of the truncated
boundary in the classical treatment of BVPs defined on infinite intervals. In this article, we investigate some open
questions related to the free boundary approach. We recall the extension of that approach to problems governed by a
system of first-order differential equations, and for the solution of the related free boundary problem we consider now
the reliable Keller’s box difference scheme. Moreover, by solving a challenging test problem of interest in foundation
engineering, we verify that the proposed approach is applicable to problems where none of the solution components
is a monotone function.
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1 INTRODUCTION

Boundary value problems (BVPs) on infinite intervals arise in several branches of science.
A classical numerical treatment of these problems is to replace the original problem by the
one defined on a finite interval, say [a, x∞] where x∞ is a truncated boundary (see, for instance,
Collatz [9, pp. 150–151] or Fox [21, p. 92]). Often the original problem is solved by comparing
the numerical results obtained for several values of x∞. In particular, the value of x∞ is varied
until the computed results stabilize, at least, to a prefixed number of significant digits. For
instance, in the case of the von Karman swirling flows, the opportunity to use values of x∞
up to 200 was reported by Lentini and Keller [28] in order to investigate a fourth branch of
the flow.

A theory for defining asymptotic boundary conditions to be imposed at the truncated bound-
ary has been developed by de Hoog and Weiss [24], Lentini and Keller [27] and Markowich [31].
See also the related work by Markowich [32], Markowich and Ringhofer [33], Schmeiser [40]
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and Mattheij [34]. In the last decade, the asymptotic boundary conditions have been applied
successfully to the numerical approximation of the so-called ‘connecting orbits’ problems of
dynamical systems (see Refs. [4–6, 8, 10–12, 22, 23, 38, 39, 37]; more on this topic in the last
section). Those problems are of interest, not only in connection with dynamical systems, but
also in the study of traveling wave solutions of partial differential equations of parabolic (and,
in time, hyperbolic) type as shown by Beyn [5], Friedman and Doedel [22], Bai et al. [3],
and Liu et al. [30]. However, a truncated boundary allowing for a satisfactory accuracy of the
numerical solution has to be determined by trial, and that seems to be the weakest point of
the classical approach. Hence, a priori definition of the truncated boundary was indicated by
Lentini and Keller [27] as an important area of research.

A different approach was proposed recently by this author in Ref. [17], where a free boundary
formulation was introduced and the unknown free boundary was identified with a truncated
boundary. In this approach, the free boundary is unknown and has to be found as part of the
solution, which is a possible way to eliminate the uncertainty related to the choice of the
truncated boundary. Moreover, the free boundary approach overcomes the need for a priori
definition of the truncated boundary. Thenew approach has been applied to the Blasius problem
[15], the Falkner–Skan equation with relevant boundary conditions [16], and a model describing
the flow of an incompressible fluid over a slender parabola of revolution [17] (see also the
recent survey in Ref. [19]).

The paper is structured as follows. In Section 2, we recall the extension of the approach
proposed in Ref. [17] and worked out in Ref. [19] to a more general class of two-point BVPs.
The main result is given by convergence of the solution of the free boundary problem to the
solution of the original problem as a parameter, introduced within the formulation, goes to
zero (see Theorem 1). In Section 3, we verify the applicability of a classical finite difference
method within the mentioned approach (in substitution of the initial value methods, defined
within group invariance theory, used in Refs. [15–17]). In that section, we consider the box
difference scheme for the numerical solution of the obtained free BVPs and we recall the main
properties of that scheme as shown by Keller [25]. In Sections 4 and 5, we introduce and solve a
challenging test problem in foundation engineering [27]. Interest for that problem is motivated
by the reason that all the problems solved earlier via the proposed approach are governed by a
third-order differential equation where the second-order derivative of the solution is a positive
monotone function that goes to zero at infinity. The main aim of this study is to verify the
applicability of our approach when, for the problem under consideration, a similar property
does not hold. The considered test problem is of particular concern here because none of the
solution components is monotone on the interval of interest (see the bottom frame of Fig. 1 in
Sec. 5). Moreover, by introducing a different free boundary formulation it is verified that the
proposed approach can be also applied when the sign of the introduced parameter is unknown
(see Tab. IV in Sec. 5). As far as the numerical solution of the free BVPs are concerned,
we use a constant step-size implementation of the box difference scheme, in contrast to the
application made in Ref. [15–17] of IMSL routines [26]. This results in lack of software control
over the achieved accuracy; therefore, we choose to validate the obtained numerical results
via a mesh refinement and Richardson’s extrapolation. Meaningful results are reported for
illustrative purposes in Section 5.

Section 6 deals with conclusions supported by evidences of the present work and indicate a
possible way to extend the proposed approach to BVPs defined on the whole real line. Provided
we are able to define an additional boundary condition, the free boundary approach is easily
extended to the most general class of two-point BVPs defined on an infinite interval; the box
difference scheme, if suitably applied within the proposed approach, provides accurate numer-
ical results; the validity of the free boundary approach does not depend on the monotonicity
of the solution of the original BVP.
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2 THE FREE BOUNDARY APPROACH

Let us consider the class of BVPs defined on an infinite interval

dy
dx

= f(x, y), x ∈ [a,∞],

g(y(a), y(∞)) = 0,

(2.1)

where y(x) is an n-dimensional vector with y�(x) for � = 1, . . . , n as components, f : [a,∞) ×
R

n → R
n , a is a finite value (but see the last section for a = −∞) and g: R

n × R
n → R

n. Note
that the BVP (2.1) may admit several or even an infinite number of solutions (as an example
consider the von Karman swirling flows investigated numerically by Lentini and Keller [28]).
In applications, we require some regular behavior of the solution at infinity; consequently, one
or more additional boundary conditions are available [see, Ref. 1, p. 486]. Additional boundary
conditions also may be defined by applying physical considerations (see, for instance, the BVP
defined in Sec. 4).We assume that at least one additional boundary condition is available

h(y(a), y(∞)) = 0, (2.2)

where h: R
n × R

n → R. In that case, a free boundary formulation for Eq. (2.1) can be intro-
duced as follows:

dy
dx

= f(x, y), x ∈ [a, xε],

g(y(a; ε), y(xε; ε)) = 0,

h(y(a; ε), y(xε; ε)) = ε, (2.3)

where 0 < |ε| � 1, the solution of Eq. (2.3) depends on ε, that is y(x; ε). We would like
y(x; ε) to be an approximation to y(x) on [a, xε], and xε is unknown. Note that a solution of
Eq. (2.3) is given by an ordered pair (y(x; ε), xε) and also that for ε = 0, Eq. (2.3) reduces to
Eqs. (2.1) and (2.2); hence, if we set ε = 0, then (y(x),∞) is a solution of Eq. (2.3).

The conditions for the uniform convergence of y(x; ε) to y(x) are given in the following
theorem.

THEOREM 1 Let us assume that each solution y(x) of Eq. (2.1) and y(x; ε) of Eq. (2.3) at
least on a neighborhood of ε = 0 are ‘isolated’ (this implies that they are locally unique).
Furthermore, we assume that xε is a differentiable function of ε on a neighborhood I0 of
ε = 0 and that the limit of dxε/dε as ε goes to zero exists. If all the components of y(x; ε)

and of (dy/dε)(x; ε) are continuous functions on the domain [a, xε] × I0, then the solution of
Eq. (2.3) converges uniformly to the solution of Eq. (2.1), as ε tends to zero.

Main idea of the Proof As a consequence of our hypotheses Mi = ‖∂ yi(x; ε)/∂ε‖∞ is
bounded for i = 1, 2, . . . , n, and from the mean value theorem it follows that

‖yi (x; ε) − yi (x)‖∞ ≤ Mi |ε| on [a, xε], for i = 1, 2, . . . , n,

where each Mi is independent from ε. Hence as ε → 0 we get the uniform convergence
result. �

We have ignored technical details related to the limiting process ε → 0. For the omitted
details, see Lemma 1 and the proof of Theorem 1 in Ref. [17].
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Let us note that there is no guarantee of convergence as εgoes to zero when ‖∂ yi(x; ε)/∂ε‖∞
is not bounded for some i = 1, 2, . . . , n. On the other hand, we can verify numerically that
if 0 < ε1 < ε2 or ε2 < ε1 < 0, then xε2 < xε1 . For results concerning the continuous depen-
dence and differentiability of the solution of BVPs with respect to the boundary data, see
Refs. [7, 13, 14].

The error related to our approach is first order in |ε|. For comparison, we have to notice
that: (1) the error obtained within the truncated boundary approach for the Blasius problem is
proportional to x∞ as shown by Rubel [36]; (2) at least for connecting orbit problems, the best
error estimate obtained within the asymptotic boundary approach is exponential small in x∞,
see Ref. [37].

Let us rewrite the free BVP (2.3) in standard form (see, Ref. [2]). To this end, we define
yn+1 = xε and the new independent variable

z = (x − a)

(yn+1 − a)
; (2.4)

so that, from Eq. (2.3) we get the following BVP:

dY
dz

= F(z, Y), z ∈ [0, 1],

G (Y(0), Y (1)) = 0,

(2.5)

where we have defined

Y(z) ≡ (y(z), yn+1)
T ,

F(z, Y) ≡ ((yn+1 − a)f((yn+1 − a)z + a, y), 0)T ,

G(Y(0), Y(1)) ≡ (g(y(0), y(1)), h(y(0), y(1)) − ε)T .

(2.6)

To simplify the notation, in Eqs. (2.5) and (2.6) and in the following, we omit the dependence
of y and Y on ε.

It is an open question to verify if to each isolated solution of Eq. (2.1) will correspond, in
general, an isolated solution of Eq. (2.3) or Eqs. (2.5) and (2.6). The author experiences that
multiple solutions of free BVPs can arise for ordinary differential equations (ODEs) admitting
periodic solutions (as reported in Ref. [18]). However, when an ODE admits periodic solutions
it is inappropriate to set for it a boundary condition at infinity. As an example, let us consider
the simplest ODE admitting periodic solutions given by d2 y/dx2 = −k2 y, with k = const,
which admits the general solution y(x) = c1 cos(kx + c2); so that, we cannot define y(∞).
Moreover, to investigate the existence and uniqueness of solution of free boundary problems
we can apply a numerical test developed in Ref. [18]. Finally, let us remark here that, given a
particular problem, Eqs. (2.5) and (2.6) are a BVP written in standard form and therefore it is
possible to study the variational problem for Eqs. (2.5) and (2.6) to verify if their solutions are
isolated (see, Refs. [1, 25, pp. 89–91]).

3 KELLER’S BOX SCHEME AND ITS PROPERTIES

Let us introduce a mesh of points z0 = 0, z j = ∑ j
i=1 �zi for j = 1, 2, . . . , J of nonuniform

spacing �zi for i = 1, 2, . . . , J with �z = maxj {�z j} and naturally
∑J

i=1 �zi = 1.We denote
by the (n + 1)-dimensional vector Vj the numerical approximation to the solution Y(z j) of
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Eq. (2.5) at the points of the mesh, that is for j = 0, 1, . . . , J . Keller’s box scheme for Eq. (2.5)
can be written as follows:

Vj − Vj−1 − �z j F
(

z j−1/2,
Vj + Vj−1

2

)
= 0, for j = 1, 2, . . . , J

G(V0, VJ ) = 0,

(3.1)

where z j−1/2 = (z j + z j−1)/2. It is evident that Eq. (3.1) is a nonlinear system with respect to
the unknown (n + 1)(J + 1)-dimensional vector V = (V0, V1, . . . , VJ )

T . Following Keller,
we apply the classical Newton’s method along with a suitable termination criterion for the
solution of Eq. (3.1) (see Sec. 5).

Let us recall now the main properties of the box scheme proved by Keller in the main
theorem of Ref. [25]. Under the assumption that Y(z) and F(z, Y) are sufficiently smooth,
each isolated solution of Eq. (2.5) is approximated by a difference solution of Eq. (3.1), which
can be computed by Newton’s method, provided a sufficiently fine mesh and an accurate
initial guess are used for the Newton’s method. As far as the accuracy question is concerned,
the truncation error has an asymptotic expansion in powers of (�z)2; so that, Richardson’s
extrapolation can be employed to get two orders of magnitude improvement for application
(see, for details, the discussion related to Tab. III in Sec. 5). Moreover, for separated boundary
conditions, the Jacobian matrix has a special block tridiagonal form that can be solved by very
efficient block-elimination procedures without destroying its zero structure.

4 A TEST PROBLEM

Here we consider a problem that was already used by Lentini and Keller [27] to test the
asymptotic boundary conditions approach. That problem is of special interest here because
none of the solution components is a monotone function (see the bottom frame of Fig. 1 in
Sec. 5). Let u(x) be the deflection of a semi-infinite pile embedded in soft soil at a distance
x below the surface of the soil. The governing differential equation for the movement of the
pile, in dimensionless form, is given by:

d4u

dx4
= −P1(1 − exp−P2u), 0 < x < ∞,

where P1 and P2 are positive material constants. At the origin, a zero moment and a positive
shear are assumed

d2u

dx2
(0) = 0,

d3u

dx3
(0) = P3.

Moreover, from physical considerations it follows that u(x) and all its derivatives go to zero
at infinity; so that, the asymptotic boundary conditions

u(∞) = 0,
du

dx
(∞) = 0

can be imposed. This problem is of interest in foundation engineering; for instance, in the
design of drilling rigs above the ocean floor.
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The governing differential equation can be rewritten as a first-order system by setting

yi(x) = di−1u

dx i−1
(x), for i = 1, 2, 3, 4.

As far as the boundary condition (2.2) is concerned, several options can be taken into con-
sideration. Since y3(∞) = 0 and y4(∞) = 0, to take into account both conditions, we can
consider

h(y(0), y(∞)) = |y3(∞)| + |y4(∞)|
and in this way the free boundary problem specializes to (note that y5 ≡ xε):

dy1

dz
= y5 y2,

dy2

dz
= y5 y3,

dy3

dz
= y5 y4,

dy4

dz
= −y5 P1(1 − exp−P2 y1),

dy5

dz
= 0,

(4.1)

y3(0) = 0, y4(0) = P3,
(4.2)

y1(1) = 0, y2(1) = 0, |y3(1)| + |y4(1)| = ε;
that is,

Y = (y1, y2, y3, y4, y5)
T

F(z, Y) = (y5 y2, y5 y3, y5 y4,−y5 P1(1 − exp−P2 y1), 0)T

G(Y(0), Y(1)) = (y3(0), y4(0) − P3, y1(1), y2(1), |y3(1)| + |y4(1)| − ε)T

in Eq. (2.5).
A second free boundary formulation for the considered test problem can be obtained by

setting for the definition of Eq. (2.2) the following condition

h(y(0), y(∞)) = y4(∞);
that is,

Y = (y1, y2, y3, y4, y5)
T

F(z, Y) = (y5y2, y5 y3, y5 y4,−y5 P1(1 − exp−P2 y1), 0)T

G(Y(0), Y(1)) = (y3(0), y4(0) − P3, y1(1), y2(1), y4(1) − ε)T

in Eq. (2.5). The main difference between the two free boundary formulations is that while we
know a priori that ε is a positive parameter in the former, we do not have any information on
the sign of ε in the latter.

Representative numerical results, both for the first and the second free boundary formulation,
are reported for comparison in Section 5.
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5 NUMERICAL RESULTS

In this section, we report some of the numerical results obtained for the test problem introduced
in the previous section. For comparative purposes, we used the same parameter values employed
by Lentini and Keller [27]:

P1 = 1, P2 = 1

2
and P3 = 1

2
.

Moreover, we choose to consider the values of the missing initial conditions y1(0) and y2(0) as
representative results. A direct way to proceed is to fix a fine grid and to perform a convergence
test for decreasing values of ε, note that we should set ε � 1 (see Tab. I). Here and in the
following, the exponential indicates a single precision arithmetic. We used constant step-sizes
due to application of Richardson’s extrapolation.

Figure 1 displays the numerical results related to different values of ε obtained by setting
J = 2000. As it is easily seen, none of the solution components is monotone on the interval
of interest.

To verify the numerical accuracy, we applied a mesh refinement obtained by fixing a value
of M > 0 and setting J = 2k M for k = 0, 1, 2, . . . . For the results reported in Table II, we
fixed M = 125 and J = 2k M for k = 0, 1, 2, . . . , 7.

For Newton’s method, we used a simple termination criterion

1

(n + 1)(J + 1)

n+1∑
�=1

J∑
j=0

|�Vj�| ≤ TOL,

where �Vj�, for j = 0, 1, . . . , J and � = 1, 2, . . . , n + 1, is the difference between two suc-
cessive iterate components and TOL is a fixed tolerance. The results listed in Tables I and II
were computed by setting TOL = 1 × 10−6.

A different validation is reported in Table III. The listed values were obtained by the extra-
polation formula

T r
k = 4r T r−1

k − T r−1
k−1

4r − 1
, for k, r = 0, 1, 2, . . . ,

where T 0
k is a result of interest, say y1(0) or y2(0), computed by a mesh of 2k M + 1 points

and r is the extrapolation index. Note that from the extrapolation formula we get T r
k = T r−1

k
when T r−1

k = T r−1
k−1 ; so that, there is no need to extend Table III with further rows.

The key point for the numerical solution of the difference system is that Newton’s method
converges only locally. Therefore, some preliminary numerical experiments may be helpful

TABLE I Numerical Results for the BVP (4.1) and (4.2), Here J = 1000.

ε it y1(0) y2(0) y3(1) y4(1) y5(0) = y5(1)

1 × 10−1 9 1.41566 −0.805665 −5.9 × 10−2 −4.1 × 10−2 6.46
1 × 10−2 11 1.42148 −0.808104 −4.4 × 10−3 5.6 × 10−3 8.84
1 × 10−3 13 1.42154 −0.808146 8.9 × 10−4 1.1 × 10−4 13.13
1 × 10−4 28 1.42154 −0.808144 −7.0 × 10−5 −3.0 × 10−5 17.75

Note: The ‘it’ column indicates the number of iterations.
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FIGURE 1 The numerical solution of the pile problem by the free boundary approach.

and are worth consideration. However, for the results reported in Tables I and II, our initial
guess to start the iterations was always as follows:

y1(z) = 10(1 − z),

y2(z) = 10(1 − z),

y3(z) = ε,

y4(z) = P3(1 − z) + ε,

y5(z) = 10.
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TABLE II Numerical Results Computed via a Mesh Refinement. Here
ε = 1 × 10−4.

J Iterations y1(0) y2(0)

125 22 1.421166 −0.807913
250 24 1.421450 −0.808089
500 24 1.421521 −0.808133

1000 22 1.421539 −0.808144
2000 22 1.421543 −0.808147
4000 22 1.421544 −0.808148
8000 22 1.421545 −0.808148

16 000 22 1.421545 −0.808148

Note: When J = 2000 we get y3(1) = −7 × 10−5, y4(1) = −3 × 10−5

and y5(0) = y5(1) = 17.747988.

A remark is due about this initial guess: y1(z) is several times over-estimated, y2(z) has the
wrong sign, etc., and last but not least the starting value of y5(z) could be related to the value of ε

because y5(z) should be a decreasing function of ε. We have verified with further computations
that the number of iterations is reduced by a more accurate initial guess. Moreover, a drastic
reduction in the number of iterations was observed by adopting a continuation philosophy;
that is, by considering the numerical results for a value of ε as the initial guess for Newton’s
method with the next value of ε. This is the main advantage of finite difference against initial
value methods because for the former we can consider ε as the continuation parameter. By
implementing this continuation idea the numerical results listed in Table I were found again
with the following sequence of iterations: 9, 6, 8, 9.

In the following, we report the results related to the second free boundary formulation of the
previous section. In this case, the sign of ε is not defined a priori; so that, we have to consider
ε going to zero, separately, from the right and from the left. The numerical results listed in
Table IV were obtained with the following initial guess:

y1(z) = 10(1 − z),

y2(z) = 10(1 − z),

y3(z) = 0,

y4(z) = P3(1 − z),

y5(z) = 50.

Note that the lack of convergence in the case corresponding to ε = −1 × 10−5 and J = 25
indicates that the initial guess is not sufficiently accurate. We have verified that by setting
y5(z) = 25, in the initial guess reported above, the applied termination criterion is verified
within 19 iterations. We remark that for the missing initial conditions the same results are
obtained when ε goes to zero from the right and from the left. Moreover, these results are

TABLE III Extrapolation of Some of the Results Listed in Table II with
M = 125 and the Indicated Values of k.

k y1(0)0
k y2(0)0

k y1(0)1
k y2(0)1

k

0 1.421166 −0.807913
1 1.421450 −0.808089 1.421545 −0.808148
2 1.421521 −0.808133 1.421545 −0.808148
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TABLE IV Numerical Results for Different Mesh-Spacings. Here TOL = 5 × 10−6.

ε J it y5(0) = y5(1) y3(1) y1(0) y2(0)

1 × 10−5 25 25 21.4 1.4 × 10−5 1.40823 −0.79991
1 × 10−5 50 21 21.0 5.0 × 10−6 1.41825 −0.80611
1 × 10−5 100 23 19.2 −1.2 × 10−5 1.42085 −0.80772
1 × 10−5 200 21 19.3 −1.0 × 10−5 1.42137 −0.80804
1 × 10−5 400 21 19.3 −6.0 × 10−6 1.42150 −0.80812
1 × 10−5 800 21 19.3 −1.0 × 10−5 1.42153 −0.80814
1 × 10−5 1600 21 19.3 −1.0 × 10−5 1.42154 −0.80815
1 × 10−5 3200 21 19.3 −1.0 × 10−5 1.42154 −0.80815

−1 × 10−5 25 NC
−1 × 10−5 50 19 18.1 −5.2 × 10−5 1.41983 −0.80662
−1 × 10−5 100 18 18.2 −4.7 × 10−5 1.42092 −0.80776
−1 × 10−5 200 18 18.2 −4.6 × 10−5 1.42139 −0.80805
−1 × 10−5 400 18 18.2 −4.6 × 10−5 1.42151 −0.80812
−1 × 10−5 800 18 18.2 −4.6 × 10−5 1.42154 −0.80814
−1 × 10−5 1600 18 18.2 −4.6 × 10−5 1.42154 −0.80815
−1 × 10−5 3200 18 18.2 −4.6 × 10−5 1.42154 −0.80815

Note: NC is an abbreviation for no convergence; ‘it’ = number of iterations.

in good agreement with those obtained in Tables I–III. All computations were performed in
FORTRAN on a SUN Ultra 5 workstation.

6 FINAL REMARKS AND CONCLUSIONS

The classical numerical treatment of BVPs defined on infinite intervals is based on the intro-
duction of a truncated boundary x∞ where suitable boundary conditions are imposed. To define
the boundary conditions to be imposed at the truncated boundary an asymptotic analysis was
developed by de Hoog and Weiss [24], Lentini and Keller [27], and Markowich [31]. As far
as the test problem of Section 4 is concerned, the related asymptotic boundary conditions are
given by:

y2(x∞) + 2−1/2 Q−1 y3(x∞) + 2−1/2 Q−3 P1[1 − exp−P2 y1(x∞)] = 0,

2−1/2 Q−1 y3(x∞) − Q−2 y4(x∞) − 2−1/2 Q−3 P1[1 − exp−P2 y1(x∞)] = 0,

where Q = (1/2)1/4, as reported by Lentini and Keller [27]. Note that the free boundary
approach is as simple as the truncated boundary one in contrast to the asymptotic boundary
approach (in this context see also the opinion expressed by Ockendon [35]).

Following the idea introduced in Ref. [17], we propose to formulate BVPs on infinite
intervals as free BVPs. Let us remark that the two limiting processes, namely �x → 0 and
ε → 0, are independent, but from a numerical viewpoint the order in which they are performed
does matter. In fact, to solve effectively a BVP defined on an infinite interval by the free
boundary approach we have to find out first of all a suitable value of ε that will assure an
acceptable error according to the proof of Theorem 1. After that we can consider a mesh
refinement or a Richardson’s extrapolation in order to improve the accuracy of the numerical
solution. Let us stress that by a mesh refinement or a Richardson’s extrapolation we may
hope to get an accurate solution of the free BVP for a fixed value of ε; to obtain an accurate
approximation of the original problem on [a, xε] we must identify first an appropriate value
of ε. In this context, the numerical results in Table I are essential for the correct application
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of the free boundary approach. Moreover, the above discussion explains the way we used
J = 1000 in Table I and J = 2000 with ε = 1 × 10−4 in Table II.

As far as the missing initial conditions for the test problem are concerned, a comparison of
the obtained values of y1(0) and y2(0) can be made, respectively, with the values 1.4215
and −0.80814 reported by Lentini and Keller [27]. They used the mentioned asymptotic
boundary conditions and employed PASVAR, a routine based upon the trapezoidal differ-
ence scheme with automatic mesh refinement and deferred corrections as described by Lentini
and Pereyra [29]. The code is rather sophisticated because it adjusts automatically the mesh
and the order of accuracy.

In conclusion, the free boundary approach is easily extended to the most general class of
two-point BVPs defined on an infinite interval. The present work indicates that the validity of
our approach does not depend on the monotonicity of the solution of the BVP. As we have
shown in Refs. [15–17] and herein, accurate numerical results within the proposed approach
are obtained either by initial value or finite difference methods.

Let us discuss, at the end of this work, a possible way to extend the free boundary approach to
the numerical solutions of problems defined on the whole real line (for instance, the connecting
orbits problems mentioned in Sec. 1). For these problems, all boundary conditions are imposed
at plus or minus infinity, so that we set a = −∞ in Eqs. (2.1) and (2.2). A free boundary
formulation can be defined by substituting the boundary condition (2.2) with

h(y(−xε), y(xε)) = ε.

Moreover, the resulting free BVP can be rewritten in standard form by setting again yn+1 =
xε and introducing the independent variable transformation

z = x + yn+1

2yn+1

instead of Eq. (2.4). The above transformation maps [−xε, xε] to [0, 1].
An application of the free boundary approach to a homoclinic orbit problem can be found

in Ref. [20].
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