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Abstract—Blasius problem is the simplest nonlin-

ear boundary layer problem. We hope that any ap-

proach developed for this epitome can be extended

to more difficult hydrodynamics problems. With this

motivation we review the so called Töpfer transfor-

mation, which allows us to find a non-iterative nu-

merical solution of the Blasius problem by solving a

related initial value problem and applying a scaling

transformation. The applicability of a non-iterative

transformation method to the Blasius problem is a

consequence of its partial invariance with respect to a

scaling group. Several problems in boundary-layer

theory lack this kind of invariance and cannot be

solved by non-iterative transformation methods. To

overcome this drawback, we can modify the problem

under study by introducing a numerical parameter,

and require the invariance of the modified problem

with respect to an extended scaling group involving

this parameter. Then we apply initial value methods

to the most recent developments involving variants

and extensions of the Blasius problem.

Keywords: boundary-layer theory, scaling invariance,

transformation methods, initial value methods.

1 Introduction

At the beginning of the last century L. Prandtl [17] put
the foundations of boundary-layer theory providing the
basis for the unification of two, at that time seemingly
incompatible, sciences: namely, theoretical hydrodynam-
ics and hydraulics. Boundary-layer theory has found
its main application in calculating the skin-friction drag
which acts on a body as it is moved through a fluid: for
example the drag of an airplane wing, of a turbine blade,
or a complete ship [18].

With the turning of this new century, as the num-
ber of applications of microelectronics devices increases,
boundary-layer theory has found a renewal of interest
within the study of gas and liquid flows at the micro-
scale regime [6, 16].
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Blasius problem is the simplest nonlinear boundary layer
problem. A recent study by Boyd pointed out how this
particular problem of boundary-layer theory has arose
the interest of prominent scientist, like H. Weyl, J. von
Neumann, M. Van Dyke, etc., see Table 1 in [4]. The
main reason for this interest is due to the hope that any
approach developed for this epitome can be extended to
more difficult hydrodynamics problems. Our main goal
here is to show how to solve numerically the Blasius
problem, and its variants and extensions, by initial value
methods derived within scaling invariance theory.

2 Fluid flow on a flat plate

The model describing the steady plane flow of a fluid past
a thin plate, provided the boundary layer assumptions
are verified (v ≫ w and the existence of a very thin layer
attached to the plate), is given by

∂v

∂y
+
∂w

∂z
= 0

v
∂v

∂y
+ w

∂v

∂z
= µ

∂2v

∂z2

(1)
v(y, 0) = w(y, 0) = 0

v(y, z) → V∞ as z → ∞ ,

where the governing differential equations, namely con-
servation of mass and momentum, are the steady-state
2D Navier-Stokes equations under the boundary layer ap-
proximations, v and w are the velocity components of the
fluid in the y and z direction, V∞ represents the main-
stream velocity, see the draft in figure 1, and µ is the
viscosity of the fluid. The boundary conditions at z = 0
are based on the assumption that neither slip nor mass
transfer are permitted at the plate whereas the remain-
ing boundary condition means that the velocity v tends
to the main-stream velocity V∞ asymptotically.

In order to study this problem it is convenient to intro-
duce a potential (stream function) ψ(y, z) defined by

v =
∂ψ

∂z
, w = −

∂ψ

∂y
.

The physical motivation for introducing this function is
that constant ψ lines are steam-lines. The mathematical
motivation for introducing such a new variable is that the
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Figure 1: Boundary layer over a thin plate.

equation of continuity is satisfied identically, and we have
to deal only with the transformed momentum equation.
In fact, introducing the stream function the problem can
be rewritten as follows

µ
∂3ψ

∂z3
+
∂ψ

∂y

∂2ψ

∂z2
−
∂ψ

∂z

∂2ψ

∂y∂z
= 0

∂ψ

∂y
(y, 0) =

∂ψ

∂z
(y, 0) = 0 (2)

∂ψ

∂z
(y, z) → V∞ as z → ∞ .

2.1 Blasius problem

Blasius [3] introduced the following similarity transfor-
mation

η = z

(

V∞

µy

)1/2

, f(η) = ψ(y, z) (µyV∞)
−1/2

,

that reduces the partial differential model (2) to

d3f

dη3
+ 1

2
f
d2f

dη2
= 0

(3)

f(0) =
df

dη
(0) = 0 ,

df

dη
(η) → 1 as η → ∞ ,

i.e., a boundary value problem (BVP) defined on a semi-
infinite interval. Blasius solved this BVP by patching
a power series to an asymptotic approximation at some
finite value of η.

2.2 Töpfer transformation

By considering the derivation of the series expansion so-
lution of the Blasius problem, Töpfer [20] defined a trans-
formation of variables that reduces the BVP into an ini-
tial value problem (IVP). However, it is much simpler to
consider directly the transformation

f∗ = λ−1/3f , η∗ = λ1/3η , (4)

and to define the non-iterative transformation method.
We notice that the governing differential equation and
the initial conditions at the free surface are left invariant

by the new variables defined in (4). Moreover, Töpfer
used the missed initial condition

d2f∗

dη∗2
(0) = 1 .

The first and second order derivatives transform in the
following way

df∗

dη∗
= λ−2/3

df

dη
,

d2f∗

dη∗2
= λ−1

d2f

dη2
,

and the value of λ can be found on condition that we
have an approximation for df∗

dη∗
(∞). In fact, by the first

of the above relations we get

λ =

[

df∗

dη∗
(∞)

]

−3/2

. (5)

Let us list the steps necessary to solve the Blasius problem
by the considered approach, we have to:

1. solve the IVP

d3f∗

dη∗3
+ 1

2
f∗
d2f∗

dη∗2
= 0

(6)

f∗(0) =
df∗

dη∗
(0) = 0,

d2f∗

dη∗2
(0) = 1

and, in particular, get an approximation for df∗

dη∗
(∞);

2. compute λ by equation (5);

3. obtain f(η) by the inverse transformation of (4).

In this way we have defined an initial value method for
the Blasius problem. In literature such a method is also
known as a non-iterative transformation method (ITM).

2.3 Truncated boundary approximation

From a numerical point of view the request to evaluate
df
dη (∞) cannot be fulfilled. Several strategies have been
proposed in order to provide an approximation of this
value. The simplest and widely used one is to introduce,
instead of infinity, a suitable truncated boundary η∞.
The question on how to set a satisfactory value of η∞
is not addressed in this work. A recent successful way
to deal with such a question is to reformulate the consid-
ered problem as a free BVP [8, 9, 10]. For instance, as far
as the Blasius problem is concerned, we can replace the
asymptotic condition with the free boundary conditions

df

dη
(ηǫ) = 1,

d2f

dη2
(ηǫ) = ǫ (7)

where ηǫ is the unknown free boundary and 0 ≤ ǫ≪ 1 is
a continuation parameter, see [8] for details. For a recent
survey on this topic see [12].



For the sake of simplicity we will not use the free bound-
ary approach here, but we perform some preliminary
computational tests in order to find a suitable value for
the truncated boundary η∞.

2.4 Numerical results

Figure 2 shows a sample numerical computation. We
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Figure 2: Blasius solution by a non-ITM.

used a variable step-size classical fourth order Runge-
Kutta method, implemented in order to maintain a local
error of the order of 10−6. Moreover, the calculation were
performed in the starred variables with a first time step
equal to 0.1 and η∗

∞
= 7.25. The asymptotic value of

interest was found to be

df∗

dη∗
(∞) ≈ 2.085409 .

This value can be used in equation (5) to get

d2f

dη2
(0) ≈ 0.332057 .

Blasius solution was found by rescaling.

2.5 The iterative transformation method

The applicability of a non-ITM to the Blasius problem is
a consequence of its partial invariance with respect to the
transformation (4); the asymptotic boundary condition is
not invariant. Several problems in boundary-layer theory
lack this kind of invariance and cannot be solved by non-
ITMs. To overcome this drawback, we can modify the
problem under study by introducing a numerical param-
eter h, and require the invariance of the modified problem
with respect to an extended scaling group involving h, see
[11] for details.

An ITM can be defined as follows:

1. - the original BVP is embedded into a modified prob-
lem involving the numerical parameter h, so that it is

ensured the invariance of the modified problem with
respect to an extended scaling group involving h.

2. - by starting with suitable values of h∗
0

and h∗
1

a root-
finder method is used to define a sequence h∗j , for
j = 2, 3, . . . , . At each iteration the group parameter
λ is obtained by solving an IVP numerically. The
related sequence Γ(h∗j ), for j = 0, 1, 2, . . . , is defined
by

Γ(h∗) = h− 1 with h = h(h∗) , (8)

Γ(·) is defined implicitly by the solution of an IVP
written in the starred variables and as a consequence
h = h(h∗) .

3. - suitable termination criteria have to be used to ver-
ify whether Γ(h∗j ) → 0 as j → ∞.

4. - the solution of the original problem can be obtained
by rescaling to h = 1.

By defining an ITM the existence and uniqueness ques-
tion can be reduced to finding the number of real zeros
of the transformation function Γ(·). This result can be
stated as follows.

Theorem 1 Let us assume that IVPs used to define the
transformation function are well posed. Then, the consid-
ered BVP has a unique solution if and only if the trans-
formation function has a unique real zero; nonexistence
(nonuniqueness) of the solution is equivalent to nonexis-
tence of real zeros (existence of more than one real zero)
of Γ(·).

The underlying idea of the proof of this theorem is that
there exists a one-to-one and onto correspondence be-
tween the set of solutions of the BVP and the set of real
zeros of the transformation function, see [11]. This theo-
rem is applied in the next section.

3 Recent developments

In this section we report on recent developments involving
some extensions of the Blasius problem and the related
numerical approximation. The results reported in this
section were found by the ode113 solver, from the MAT-
LAB ODE suite written by Samphine and Reichelt [19],
with the accuracy and adaptivity parameters defined by
default.

3.1 Moving surfaces

Klemp and Acrivos [15] were the first to define the sim-
ilarity model of a boundary layer problem over moving
surfaces. For this model the Blasius equation has to
be considered along with the usual asymptotic boundary
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Figure 3: Blasius problem with moving plate boundary conditions. The two different solutions for P = 0.25.

condition at infinity, and the following non-homogeneous
boundary conditions at η = 0

f(0) = 0 ,
df

dη
(0) = −P , (9)

where P is the ratio of the boundary velocity to the free
stream velocity. Klemp and Acrivos studied the effect of
the parameter P on the boundary layer thickness. For
P > 0, two solutions exist only for P less than a critical
value Pc, as shown numerically by Hussaini and Lakin
[13]. These authors found a numerical value of Pc equal
to 0.3541. Hussaini et al. [14] proved the nonuniqueness
and analyticity of solutions for P ≤ Pc, and derived the
upper bound 0.46824 for Pc.

More recently, a modified Blasius equation, taking into
account the effect of P on the boundary layer thickness,
has been introduced by Allan [1]. Moreover, Allan and
Syam [2], using an homotopy analysis method, define an
implicit relation between the wall shear stress and the
moving wall parameters. The study of these relation
shows that two solutions exist when P ≤ Pc ≈ 0.354 . . . ,
one solution exists for P = Pc and no solution exists for
P > Pc.

We have used the ITM in order to investigate the exis-
tence and uniqueness question for the Blasius model on
a moving plate. For the modified problem we defined the
boundary condition

df

dη
(0) = −h P

and used the extended scaling group

f∗ = λf , η∗ = λ−1η , h∗ = λ2h . (10)

so that λ is defined by

λ =

[

df∗

dη∗
(∞)

]1/2

. (11)

Here we report on sample numerical results. First let us
consider the case P = 0.25. Sample numerical results
are reported in Table 1. In this case Γ(·) has two differ-

h∗ Γ(h∗) h∗ Γ(h∗)

1. −0.528765 10. −0.008382

3. 0.198514 3. 0.198514

2.454091 0.045354 9.716410 0.016266

2.339221 0.008091 9.903562 −1.52 · 10−4

2.319037 0.001371 9.901831 −2.96 · 10−6

2.315626 2.21 ·10−4 9.901798 −5.79 · 10−8

2.315076 3.87 ·10−5 . .

2.314979 6.78 ·10−6 . .

2.314963 1.19 ·10−6 . .

2.314960 2.08 ·10−7 . .

df

dη
(0)

d2f

dη2
(0)

df

dη
(0)

d2f

dη2
(0)

−0.25 0.283928 −0.25 0.032094

Table 1: Fluid flow on a moving plate: numerical results
by the ITM.

ent zeros. Figure 3 shows the two corresponding solution
found by the ITM. It is evident, from the two frames of
this figure, that the truncated boundary approach has to
be supplemented by some preliminary numerical experi-
ments and this is more relevant in the case of non unique-
ness of solution. In fact, if we set η∞ = 10, then we miss
the solution shown in the right frame of figure 3. For the
ITM we used the convergence criterion |Γ(·)| < 10−6. On
the contrary, if we set P = 0.5, then we find that Γ(·) has
always the same sign, so that no solution is available for



such a case.

3.2 Slip flow condition

We consider now the case of a rarefied flow where the
no-slip condition at the wall, considered in the previous
section, must be replaced by a slip-flow condition, see for
instance Gad-el-Hak [6]. For an isothermal wall, the slip
condition can be defined as

v(y, 0) =
2 − σ

σ
ℓ
∂v

∂z
(y, 0) ,

where ℓ is the mean free path, and σ is the tangential mo-
mentum accommodation coefficient. Within a similarity
transformation this slip boundary condition becomes

df

dη
(0) = P

d2f

dη2
(0) ,

where P is a non-dimensional parameter, that takes into
account the behaviour at the surface, defined by

P =
2 − σ

σ
Kn Re y1/2 ,

where Kn and Re are the Knudsen and Reynolds num-
bers based on y.

For the Blasius problem with slip condition we imple-
mented both the non-ITM and the ITM. In order to ap-
ply the non-ITM we had to require that P is a parameter
involved in the scaling invariance, i.e., we defined the ex-
tended scaling group

f∗ = λf , η∗ = λ−1η , P ∗ = λ−1P . (12)

As far as the application of the ITM is concerned, we
used a modified problem with the boundary condition

df

dη
(0) = h P

d2f

dη2
(0) ,

and the extended scaling group

f∗ = λf , η∗ = λ−1η , h∗ = λ−1h . (13)

Henceforth, in both cases λ is defined, once again, by
equation (11).

Sample numerical results are reported in Tables 2 and 3.
Figure 4 shows a sample numerical integration for P =

1.562257. Note that the solution of the Blasius problem
with slip flow condition was computed by rescaling.

For the ITM, we always used h∗
0

= 0.1 and h∗
1

= 1 but
for the case P = 50 where, in order to speed up the con-
vergence, we set h∗

1
= 0.5. By setting |Γ(·)| < 10−6, as a

convergence criterion, the Regula Falsi method converged
within 8 iterations in all cases.

P ∗
df∗

dη∗
(∞)

df

dη
(0)

d2f

dη2
(0) P

0. 2.085393 0. 0.332061 0.

0.1 2.090453 0.047836 0.330856 0.144584

0.5 2.191907 0.228112 0.308153 0.740255

1. 2.440648 0.409727 0.262266 1.562257

5. 5.771518 0.866323 0.072122 12.011992

10. 10.554805 0.947436 0.029162 32.488159

20. 20.394883 0.980638 0.010857 90.321389

25. 25.353618 0.986053 0.007833 125.880941

Table 2: Non-iterative numerical results.

df∗

dη∗
(∞)

df

dη
(0)

d2f

dη2
(0) P

2.085393 0. 0.332061 0.

2.087710 0.033151 0.331509 0.1

2.262516 0.293841 0.293841 1.

3.644351 0.718686 0.143737 5.

5.203210 0.842545 0.084255 10.

13.894469 0.965399 0.019308 50.

Table 3: Slip boundary condition: numerical results by
the ITM.
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Figure 4: Blasius problem with slip condition. Numerical
solution by a non-ITM with P ∗ = 1 and P = 1.562257.

4 Future Work

The ideas outlined in this paper can be applied to other
problems of boundary-layer theory. As an example let us
consider the Falkner-Skan equation with relevant bound-



ary conditions

d3f

dη3
+ f

d2f

dη2
+ β

[

1 −

(

df

dη

)2
]

= 0

(14)

f(0) =
df

dη
(0) = 0 ,

df

dη
(∞) = 1 ,

where f and η are appropriate similarity variables and
β is a parameter. This problem describes the flow of a
fluid past a wedge, see [7]. The application of the ITM to
(14) has been reported in [9] but only in the simple case
where 0 ≤ β ≤ 1. It is well known that the case β > 1 is
more interesting, because the Falkner-Skan model loses
the uniqueness property and a hierarchy of solution with
reversed flow exists [5].
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