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Abstract 

Fazio, R., Numerical length estimation for tubular flow reactors, Journal of Computational and Applied 
Mathematics 41 (1992) 313-321. 

This work was motivated by the engineering problem of determining the optimal length for tubular flow 
reactors. We considered an isothermal nth-order chemical reaction occurring in a tubular flow reactor with 
axial missing. The mathematical model describing the problem was a fret boundary value one. The free 
boundary represented the reactor length. In this context we p;aved a theorem characterizing an upper bound 
for the free boundary. In order to solve the problem in point we introduced two different numerical methods. 
First a noniterative method was considered in order to obtain an upper bound of the free boundary. Then we 
used this upper bound in order to start an iterative method that allowed us to find an approximation of the 
free boundary. In closing we obtained numerical results citlicr for an cvcn or an odd order reaction. 

Keywords: Tubular flow reactors; free boundary value problems; noniterative and iterative numerical methods. 

1. Introduction 

This paper is concerned with the engineering problem of estimating the optimal length for 
tubular flow chemical reactors. A preliminary version of this subject is considered in [4]. 
Moreover a recent paper [3] suggests a possible way to investigate numerically the existence 
and uniqueness question. 

A chemical reactor is a vessel where materials through chemical transformations form 
products. Only two types of reactors are built: the tubular and the tank reactors [l 11. If we 
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nsider a large amount of reactant, as for chemical plants, we have to use tubular reactors 
since the tank reactors are not suitable in this instance. 

r concern is about the following question: how long has to be taken the tubular reactor in 
to get at the outlet side of it 90% of the product? Since the reactor length is unknown, 

we have to modify the boundary conditions usually imposed 1171. The mathematical model to be 
nsidered is that of a free boundary value problem of the type 

d’rr drc 
s= -y’ I(’ dx l 1 

x E (0, s), 

(0)) 
dtl 

(1-l) 

= 0, U(S) = j(s), z(s) = l(s), 

where fk: ), g( - ,- 1, j( - 1 and I( - 1 are arbitrary functions of their arguments and s is the 
unknown free boundary. The conditions U(S) =j(s) and (du/dx)(s) = I(s) define the value of 
s. We note that the estimation of process duration considered in [I61 is a different problem. In 
fact. in that case we have only one condition at the free boundary s. 

In order to solve the proposed problem we consider a noniterative transformation method 
and a simple shooting one. These methods are used successfully in [5] to solve a nonlinear free 
boundary test problem [lo]. 

A way to define a shooting method is to set a shooting parameter and a shooting function. 
Dealing with a free boundary value problem we recognize that the free boundary has to be 
found in the resolution process. It appears to be simple to choose the free boundary value s as 
the shooting parameter and the boundary condition at zero as the shooting function. This 
shooting method can be seen as a trial method. A trial method for free boundary value 
problems is discussed in [2]. 

The noniterative transformation method is established in [8,9]. Some important applications 
to problems of current interest are considered in [4-91. Here we applied the noniterative 
method in order to obtain an upper bound for the free boundary, see Theorem 1. Then, we 
used this upper bound in order to choose the starting values of the shooting parameter. 
Therefore, in this way we avoid the trial aspect of the shooting method. 

In Section 2 we point our attention to isothermal tubular flow reactors with “axial missing” 
[13]. In Sections 3 and 4 we introduce the numerical methods. In closing, in Section 5, 
representative numerical results and some concluding remarks are given. There, we discuss an 
even and an odd order reaction. 

2. Tubular chemical reactors 

Let us consider an isothermal nth-order chemical reaction in a homogeneous tubular flow 
reactor with axial missing. We assume that in the chemical process only one species of reactant 
is involved and only one species of product is produced. At the inlet side we introduce only 
reactant of species A and at the outlet side we get the product B along with residual material 
A. A second-order reaction reads as A +A + B, a third order as A + A +A + B, and so on. 
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By using the material balance of the fluxes of species A it is possible to obtain for tht 
concentraticn of the reactant A the following governing equation [14]: 

(2 1) . 

In (2.1) x represents the dimensional length 0 <x G s; u(x) = C,(x)/C,(,, C,(x) and CA being 
the concentrations of reactant A, respectively, at the point x and at the inlet x = 0, io that 
u E [0, 11. N, and R are respectively the dimensionless Peclet group and the reaction rate 
group, i.e., N, = P/E, and R = KCfi,“/L’, r is the axial velocity of species A, Ea is the 
diffusion coefficient and K is the rate of reaction. Here we remark that N,, and R are greater 
than zero. 

The classical two-point boundary conditions associated to (2.1) are those considered in [17]. 
In the present context we consider (2.1) along with the free boundary conditions 

1 du 
u(O) --N-$0)=1, u(s)=7, &)=O. (2 2) . 

The condition 

1 du 
u(0) - - - 

N,, dx(‘) = ’ 

is because of the axial missing hypothesis [13]. Here zero has to be intended as O+. In fact we 
have a discontinuity in the value of u at zero where u(O- ) = 1 whereas u(O+) < 1. LAO+) < 1 
since NPe > 0 and W. expect, because of the reaction process, that (du/dx)(O+) < 0. T 
represents the residual material of species A at the free boundary, so that 0 < 7 < ~(0’). 
(du/dx)(s) = 0 physically means that no reaction is taking place at the free boundary. 

In the mathematical model (2.1), (2.2) we can look at the free boundary as a function of the 
physical parameters N,, , R, n and 7. In order that the model be consistent with the physical 
context we have to verify that 

as 
- co, 
aNPe 

as 3s 

an >O and z <O. (2 3) . 

Moreover, for physical reasons, u(x) should be monotone decreasing in [0, s). 
Let us neglect, in order to consider a supplementary problem, the axial missing effect at the 

boundary x = 0. We will denote with (u,(x), sw) the solution of the free boundary value 
problem where u,(O) = 1. Moreover, for the same physical reasons u,(x) should be monotone 
decreasing in [0, sW). Next we prove the following theorem. 

Theorem 1. If the pairs (u(x), s) and (u,(x), s,) are respecticely the solution for the probkm 
with and without axial missing (defined as before), then an upper bound for the free boundary s is 
giuen by the calue of s,, , i.e.. s < s,. 

Proof. First we prove that (du/dx)(x) < 0 for x E [0, s). Being 7 > 0 and (d2u/dx%s) > 0 it 
follows that u has a positive local minimum in s. Therefore u(x) > T and (du/dx)( x) < 0 in 
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the method an iterative one. If F(Q) + 0 as k --) 00, then sk + s. The criteria for the 
convergence could be 

1 sk --k_,]<TOl and IJ;(Sk)I<TO1, (3 4) . 
where To1 is a prefixed tolerance. 

We have to remark that every simple shooting method may have two weak points. First if the 
differential problem is stiff (we mean that it is unstable from an analytical point of view), then 
the shooting method will result in an ill-conditioned algorithm. In such a case the sequence of 
the shooting parameter fails to converge. Then it is necessary either to integrate numerically in 
the nonstiff direction or to resort to variants of the shooting method [12]. A further drawback is 
that the sequence of the shooting parameter does not converge when inaccurate initial values 
of it are chosen. It is possible to use a trial-and-error search method in order to find 
appropriate initial values of the shooting parameter. This strategy usually requires more 
numerical integrations than the iterative method. For the problem posed in Section 2, Theorem 
1 given there allows us to find an upper bound for our shooting parameter. This upper bound 
can be found noniteratively by the method discussed in the next section. 

4. A noniterative transformation method 

Here we consider the class of free boundary value problems given by 

u(0) = cy, u(s) = P, 
du 
z(s) = Y, 

(4 1) . 

where C( - ; ) is an arbitrary function of its arguments, cy, p and y are constants. 
It is possible to solve numerically this type of problems by using a noniterative numerical 

method established in [8,9]. Let us summarize that method here. By assuming cu # p, we 
introduce the new variables 

U -a! 

* p-a 
= - exp(x), 2 = exp( x), (4 2) . 

and we suppose z = z(t), so that 

dz 
du -*dt 
,=(p+* d . 

2 7 (4 3) 

’ dt 

d2u 
-= -(P-(Y) 
dx2 

(4 4) . 
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ing to (4.2)-(4.4) the free boundary value problem (4.1) transforms to 

dz 
Z 
-% 
dz 9 

Zdt I 

dz B --cy 
z(0) = 1. z(S) = s, 

dr = (S) y+p-ar’ 

(4 5) . 

where S = exp(s). 
We note that (4.5) is partially invariant with respect to the stretching group 

t* =At, S* =hS, i*=hZ, (46) . 

where A is the exponential of the group parameter. Partial invariance means that the 
differential equation (4.5) along with the boundary conditions at t = S are invariant under (4.6), 
whereas the boundary condition z(O) = 1 does not. 

In order to obtain the noniterative numerical solution of (4.1) we guess a value of S* > 0 and 
-we integrate numerically the transformed equation in (4.51, with initial conditions z *(S *) = S* 
and (dz*/dt*MS*) = (/3 - a)/(~ + /3 - cu), backwards in [O, S*]. In this way we get a value of 
z W.8. If z “(0) = 1, we have the numerical solution. Otherwise, from (4.6) we can find 

S* dz dz* 
S =- 

z*(o) ’ dr (0) =F ’ (0) (4 3 . 

and then 

s = ln( S). 
dlc 
,x(O)=Wa) (4 8’ . 

In the above discussion the value S* is completely arbitrary. Therefore we may use different 
values of S* and compare the numerical results. 

me&al results and discussion 

In this section we discuss some numerical results for the posed problem. 
First we consider the upper bound for the value of the free boundary s. By applying the 

transformation of Section 4 we find the transformed problem 
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Table 1 
An even (II = 2) order reaction with axial missing 

Sk Fb, 1 140) du 
z(O) a 

e 
-- 

4.0 - 0.634956 
5.0 - 0.144354 

6 5.119831 - O.l5D-05 0.831273 - 1.012352 
7 5.119832 - 0.29D-09 0.831274 - 1.012354 
S 5.119832 -0.51D-15 0.83 1274 - 1.012354 

il Hcrc and in Table 2 the values of (du /ds)(O) have been obtained through the formula drc /dx = (l/s) drr /dy. 

Then in order to apply the shooting method we have to consider the problem 

1 dlc du 
U(0) - - - sN,, dy(0)=l, 11(1)=7, -d--(1)=0. 

As a first case we assume the following numerical values: 

N,,=6, R=2, r=O.l, n= 2. (5 3) . 

A proof of the existence and uniqueness of the solution of (2.1), (2.2) in the case characterized 
by (5.3) is given in [3]. By solving (5.1) with the method of Section 4, setting indifferently 
S* = 0.5 or S* = 1.0, we obtained s,~ = 5.260967 and (du,/dx)(O) = - 1.409545. As remarked 
in Section 3 the value of s, found by the noniterative transformation method was used as a 
hint for the shooting method. In the numerical solution of (5.2) we used the secant method with 
the convergence criteria as in (3.4) and To1 = lD-06; here and in the following the symbol D 
indicates a double-precision arithmetic. The numerical iterations are listed in Table 1. 

In order to validate directly the numerical results we used the computed value of s. The 
differential equation (2.1) was integrated backwards in [0, s] with initial data at x = s as in 
(2.2). So doing we found u(0) = 0.831274 and (du/dx)(O) = - 1.012353. We have agreement 
with the values of Table 1 up to the sixth digit. 

The present approach can be used for considering a generic nth-order chemical reaction and 
for different values of the other parameters involved. Let us discuss here a second case n = 3 
and NPe, R and T as in (5.3). For the problem without axial missing we found s,~ = 25.878 363 
and (du,/dx)(O) = - 1.296238. Then 25.878363 has to be an upper bound of the free 
boundary for the axial missing case. Table 2 lists the numerical results obtained by means of the 
shooting method. The secant method was used again with To1 = lD-06. A direct validation of 
these results, as discussed before, led to u(0) = 0.854 897 and (dld/dX)(O) = - 0.870 613. The 
agreement reaches the sixth digit. 

In the numerical integrations we used the DIVPAG integrator with step-size and local error 
control, in the IMSLMATH/LIBRARY [lS]. The tolerance we used for the error control, 
within the DIVPAG integrator, was of lD-12. 
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3) order reaction with axial missing 

7 25 . 738?3 WM - 0.34D-05 0.854895 - 0.870609 
8 25.738234 O.l6D-08 0.854898 - 0.870615 

25 . 738?34 a - 0.26D- I3 0.854898 - 0.8706 15 

So far we have described a possible way to solve the proposed problem. The shooting 
ethod was specially intended for free boundary value problems. We selected the unknown 

free boundary as the shooting parameter. The choice of a different shooting parameter will 
result. since the value of s is unknown, in a more complicated algorithm. Only if we get an 
ill-conditioned algorithm. it seems worth considering to resort to a more complicate one. In 

er to be efficient any shooting method needs to start with appropriate values of the shooting 
parameter. Theorem 1 of Section 2 and the application of the noniterative method allowed us 
to use effectively the shooting method. 

For illustrative purpose we considered an even and an odd order reaction. In both cases we 
choose to validate directly the numerical results. More computational experiments, although 
not reported here, suggest that, as expected, the conditions (2.3) are verified. 

The formBalation (2.5) may suggest to integrate (2Sa) forwards with initial conditions as in 
(2.5b) checking at every step if the boundary condition at ( = s is verified. This strategy could 
be inappropriate and cost-effective, for large values of s at least, having to use a small step size 
in order to achieve the required accuracy. 
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