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A parabolic problem defined on unbounded domains and admitting invariance property to Lie group of scalings can be
transformed into an equivalent boundary value problem governed by an ODE defined on an infinite interval. A free boundary
formulation and a convergence theorem for this kind of transformed problems are available in [Fazio, SIAM J. Numer.
Anal., 33 (1996), pp. 1473-1484]. Depending on its scaling invariance properties, the free boundary problem is then solved
numerically using either an iterative or a non-iterative method. Finally, the solution of the parabolic problem is retrieved
applying the inverse map of similarity.

1 The moving boundary formulation approach

For the sake of brevity we describe our approach for the following model

∂2u

∂x2
= u

∂u

∂t
u(x, 0) = 0 x > 0

(1)
u(x, t) → 0 x → ∞ t > 0

∂u

∂x
(0, t) = −c t > 0 ,

describing thermal expulsion of fluid from a long slender heated tube where u is flow velocity induced in the fluid by the
heating of the tube wall (see Dresner [1, pp. 35-40]). With regard to scaling group

x∗ = µx , t∗ = µρt , u∗ = µρσu ,

the governing equation results to be invariant if ρ = 2
1−σ . By imposing the invariance of the boundary condition at x = 0, we

get the value σ = 1/3. Therefore, the two invariants for this problem are given by

η = xt−1/3 , F (η) = u(x, t)t−1/3 .

Expressing the function u(x, t) and its derivatives involved in the model (1) in terms of the similarity variables we obtain the
following boundary value problem

d2F

dη2
=

F

3

(
F − η

dF

dη

)
(2)

dF

dη
(0) = −c , F (∞) = 0 .

The ODE in (2), called the principal ODE, is still invariant with regard to the scaling group (the Dresner associated group)

η∗ = λη, F ∗ = λ−2F .

As one of the boundary conditions is defined at infinity, we can reformulate such a BVP problem (2) as a free boundary
one, in this context see Fazio [2] for a general theory. The resulting free boundary problem is given by

d2F

dη2
+

η

3
F

dF

dη
− F 2

3
= 0

(3)
dF

dη
(0) = −c , F (ηε) = 0 ,

dF

dη
(ηε) = ε ,
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where ηε is the introduced unknown free boundary.
For the numerical solution of (3) we can use the non-iterative method introduced by Fazio and Evans [3]. Firstly, we fix

F ∗(η∗
ε ) = 0, dF ∗/dη∗(η∗

ε ) = −1, that is ε∗ = −1. Choosing a value for η∗
ε and integrating the problem (3) (written in the

starred variables) backward from this value up to zero, we compute the value of dF ∗/dη∗(0). From the similarity relations
we can deduce the following relations

dF ∗

dη∗ (0) = λ−3 dF

dη
(0) , η∗

ε = ληε ,

so that we can work out the value for the similarity parameter and the free boundary

λ =

⎛
⎜⎜⎝ −c

dF ∗

dη∗ (0)

⎞
⎟⎟⎠

1/3

, ηε = λ−1η∗
ε .

In a similar way, we can obtain the corresponding original (not-starred) value at the origin assumed by the function as well as
the value of ε

F (0) = λ2F ∗(0) , ε = λ3ε∗ .

A numerical experiment has been carried out and its result is summarized in Table 1 for the value of c = 0.1. The Table
caption shows the used value of c and the conditions imposed at the free boundary. It is evident the convergence of the process

η∗
ε λ ηε ε F (0)

2.5 0.193356 12.929284 −7.2E−03 0.324044
2.6 0.167000 15.568807 −4.6E−03 0.324796
. . . . .
. . . . .
. . . . .

2.95 0.052287 56.418804 −1.4E−04 0.325569
3. 0.028296 106.022609 −2.2E−05 0.325573
3.025 0.012804 236.248810 −2.1E−06 0.325573

Table 1 Conditions at the free boundary and parameter used: F ∗(η∗
ε ) = 0,

dF ∗

dz∗ (η∗
ε ) = −1, and

dF

dz
(0) = −c = −0.1 .

because as the parameter ε → 0 it follows that the free boundary ηε → ∞, proving the validity of the theoretical assumptions
taken.

By recalling the scaling relation involving the function F (η) and its derivative, it is easy to realize that the quantity

I =
dF

dη
(0)/[F (0)]3/2 ,

is an invariant that can be numerically deduced from the above Table. As a result, for any other value of the parameter c, the
missing initial condition is given by

F (0) =
(−c

I

)2/3

.

All computations were performed by the ODE45 Runge-Kutta’s routine available with MATLAB (TM), with a relative
local error tolerance set equal to 10−6.

As a final remark we point out that sometimes the principal ODE does not admit a scaling invariance, this is for instance
the case for the ODE derived from the linear heat equation. However, in such a case by introducing an ad hoc dimensionless
parameter it is possible to impose the invariance under an extended scaling group for the activation of an iterative method. For
further details and examples on this topics see Fazio [4, 2].
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