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A B S T R A C T

In this paper, the unsteady isothermal flow of a gas through a semi-infinite micro–nano porous medium described
by a non-linear two-point boundary value problem on a semi-infinite interval has been considered. We solve
this problem by a nonstandard finite difference method defined on quasi-uniform grids in order to derive a new
numerical approximation. By introducing a stencil that is constructed in such a way that the boundary conditions
at infinity are exactly assigned, the proposed method is effectively used to determine the numerical solution. In
addition, a mesh refinement and the Richardson’s extrapolation allow to improve the accuracy of the numerical
solution and to define a posteriori estimator for the global error of the proposed numerical scheme. We determine
the accurate initial slope 𝑑𝑢

𝑑𝑥
(0) = −1.1917906497194208 calculated for 𝛼 = 0.5 with good capturing the essential

behavior of 𝑢(𝑥). This clearly demonstrates that the numerical solutions presented in this paper result highly
accurate and in excellent agreement with the existing solutions available in the literature.

1. Introduction

In the last decades, micro and nano flows in porous media are
becoming a relevant research area due to their wide application to
engineering and scientific problems. Many of this problems can be
modeled by strongly nonlinear boundary value problems (BVPs) on
unbounded domains. In general, the BPVs on an infinite domain arise
in many fields, e.g. thermodynamics, astrophysics, chemical kinetics,
mathematical physics, population models, thermal behavior, fluid me-
chanics and many other topics.

In order to solve such a class of problems, the classical approach is
to replace the infinite domain by a truncated finite interval considering
a sufficiently large finite value, the so-called truncated boundary, and
then, on this new truncated boundary to impose a suitable boundaries
condition. To obtain a satisfactory accuracy of the numerical solution,
a truncated boundary has to be determined by trial and errors and this
seems to be the weakest point of this classical approach. Moreover, the
definition of the suitable boundary conditions is an open problem (see
for example [1–4]) and in some cases, their choice is not unique [5–
7] and strongly affects the solutions. This approach is used for solving
mathematical models in several fields of the applied sciences.

In order to avoid the drawbacks of the truncated domain, it is
possible construct quasi-uniform meshes [8,9] by using smooth, strictly
monotonic functions. In this way, the whole infinite domain is taken into
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account in the mapping where the grid-points are located at mid-point
of each sub-interval, then the difficulty caused by numerical treatment
of the last infinite sub-interval is avoided.

In this paper, we use a smooth, strictly monotonic function to
construct a quasi-uniform map and then we develop on the original
semi-infinite domain a second order non-standard finite difference
scheme defined on quasi-uniform grid that allows to impose the given
boundary conditions exactly. In particular, we propose a non standard
finite difference method on quasi-uniform mesh for obtaining a nu-
merical solution of unsteady flow of gas through a porous medium.
The physical problem is modeled by a second order highly nonlin-
ear ordinary differential equation defined on a semi-infinite domain
and represents a guideline for several problems arising in the gas
flow theory. Because of its strongly non linearity, this equation has
been numerically investigated by several authors. Up to now, only
numerical or approximate solutions have been found under suitable
boundary conditions. By using a modified Adomian decomposition
method [10,11] or He’s homotopy/variational iteration method [12]
incorrect numerical results were found. By using spectral methods or
finite difference methods, more accurate solutions were determined.
Only Parand and al. [13], recently, by a collocation method based on
rational Jacobi functions, found a good approximate solution. Because
of the considerable numerical disagreement, we propose the recently
developed finite difference method in order to study the physical model
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and to derive a new more accurate numerical approximation. The
proposed numerical method is firstly developed in [14] and successively
adopted in [15] and [16], where, numerical results show the efficiency
and the reliability of the proposed numerical method. The key advantage
of the presented approach is that the given BVP is solved on a semi-
infinite interval by introducing a stencil that is constructed in such a way
that the boundary conditions at infinity are exactly assigned. Finally,
via a mesh refinement, by using the Richardson’s extrapolation and
a posteriori error estimator we improve the accuracy of the obtained
numerical results showing that they are in excellent agreement with the
solutions found in literature.

2. Mathematical model

We consider the following nonlinear partial differential equation,
derived by Muskat [17], that describes the unsteady flow of a gas
through a semi-infinite porous medium [18,19]

∇2𝑃 2 =
2𝛷𝜇
𝑘

𝜕𝑃
𝜕𝑡

, (1)

where ∇2 is the Laplace operator, 𝑃 is the pressure within the porous
medium, 𝛷 the porosity, 𝜇 the viscosity, 𝑘 the permeability, and 𝑡 the
time. In the one-dimensional medium, 𝑧 ∈ [0,∞], Eq. (1) reduces to

𝜕
𝜕𝑧

(

𝑃 𝜕𝑃
𝜕𝑧

)

=
𝛷𝜇
𝑘

𝜕𝑃
𝜕𝑡

, (2)

with the boundary conditions

𝑃 (𝑧, 0) = 𝑃0 0 < 𝑧 < ∞,

𝑃 (0, 𝑡) = 𝑃1 with 𝑃1 < 𝑃0, 0 ≤ 𝑡 < ∞ .

We suppose that, at the initial time, the porous medium is initially filled
with a gas at a uniform pressure 𝑃0 > 0, then the pressure at the outflow
face is suddenly reduced at the value 𝑃1 with 0 ≤ 𝑃1 < 𝑃0 and is,
thereafter, maintained at this lower value. Note that, 𝑃1 = 0 is the case of
diffusion into a vacuum. New variables were introduced by Kidder [20],
by Davis [21] and in [22] to transform the nonlinear partial differential
equation (2) to a nonlinear ordinary differential equation. In terms
of the new independent variable 𝑥 and of the dimensionless variable
𝑢(𝑥)

𝑥 = 𝑧
√

𝑡

(

𝐴
4𝑃0

)1∕2
,

𝑢(𝑥) = 𝛼−1
(

1 −
𝑃 2(𝑧)
𝑃 2
0

)

,

with 𝐴 = 𝛷𝜇∕𝑘 characterizing the property of the medium, and 𝛼 =
1 − 𝑃 2

1 ∕𝑃
2
0 , the one dimensional nonlinear partial differential equation

(2) reduces to the nonlinear ordinary differential equation given by
(unsteady gas equation)

𝑑2𝑢
𝑑𝑥2

+ 2𝑥
√

1 − 𝛼𝑢

𝑑𝑢
𝑑𝑥

= 0, (3)

with the following boundary conditions on the semi-infinite domain
required by the physical problem

𝑢(0) = 1 , lim
𝑥→∞

𝑢(𝑥) = 0 , 0 ≤ 𝛼 ≤ 1 . (4)

The problem (3) was handled by Kidder in [20] and is also called Kidder
equation. The biggest value of the parameter, 𝛼 = 1 is special because,
recalling the boundary condition 𝑢(0) = 1, the factor

√

1 − 𝛼𝑢(𝑥) in the
differential equation is singular at the origin. In [20], Kidder calculated
an approximate analytical solution 𝑢(𝑥; 𝛼 = 0) of the problem (3) for
𝛼 = 0 as follows

𝑢(𝑥; 𝛼 = 0) = 1 − erf(𝑥) = erfc(𝑥), (5)

where erf(𝑥) = (2∕
√

𝜋) ∫ 𝑥
0 exp(−𝑦2)𝑑𝑦 is the usual error function and

erfc(𝑥) is the complementary error function. This solution was used by

many researchers to obtain an approximate solution for 𝑢(𝑥; 𝛼) over the
whole range of parameter 𝛼.

The unsteady gas equation (3) has been analytically and numerically
investigated by several authors. Agarval and O’Regan studied the exis-
tence of solutions [23], upper and lower solutions [22] of the considered
problem. Countryman and Kannan [24] proved that the solution is
enclosed by a pair of explicit analytic functions, obtained as solutions.
Baxley [25] studied the problem via an initial value problem approach
in combination with the shooting method. Wazwaz [10,11] applied a
modified Adomian decomposition method, but his results are incorrect;
his best prediction for 𝛼 = 0.5 is 𝑢𝑥(0) = −1.025 versus the true value
of −1.1917. Noor and Mohyud-Din used He’s homotopy/variational
iteration method [12], but obtained the same incorrect slope numbers
as Wazwaz. Parand et al. applied a pseudospectral method with a
rational Chebyshev basis and also with a basis of modified generalized
Laguerre functions [26,27]. Parand et al. also employed generalized
Laguerre functions, but in a nodal or Lagrangian basis [28]. Rad and
Parand applied the homotopy perturbation method for obtaining the
analytical solution of the model [29] whose value is 𝑢𝑥(0) = 1.188976708
for 𝛼 = 0.5. Khan et al. used a Laplace decomposition method com-
bined with Padé approximants [30]. They obtained the value 𝑢𝑥(0) =
1.373178096 for 𝛼 = 0.5. Rezaei et al. used a pseudospectral method
with the orthogonal rational Legendre and sinc functions and they
carried their computations to moderately large degree, but converged,
to 𝑢𝑥(0) = −1.18868, for 𝛼 = 0.5, which is too small by 0.3%, [31].
Abbasbandy [32] solved the problem by using two different schemes,
the implicit finite-difference Keller-box method and the shooting one,
comparing calculated numerical results for different values of accuracy
of the independent variable at the edge of the boundary layer obtaining
𝑢𝑥(0) = 1.1917907719590468 for 𝛼 = 0.5. Iacono and Boyd [33] used
a rational Chebyshev pseudospectral method in order to compute the
slope at the origin given by 𝑢𝑥(0) = 1.191790649719421 for 𝛼 = 0.5.
Recently, Parand and al. [13], using a collocation method based on
rational Jacobi functions, found a new approximate solution of initial
slope 𝑢𝑥(0) = −1.1917906497194217341228284 for 𝛼 = 0.5.

In this paper, we present a new approximate solution of Eq. (3)
obtained by a nonstandard finite difference scheme defined on quasi-
uniform grids.

3. Numerical method

In this Section, we provide the details about the proposed finite
difference method and its implementation in order to obtain the ap-
proximate solution of the given BVP (3).

In order to solve the problem (3) on the semi-infinite domain, first
we construct a quasi-uniform map from a reference finite domain, then
we develop on the original domain a non-standard finite difference
scheme that allows to impose the given boundary conditions exactly.
More details of the numerical method proposed for the class of BVPs
can be found in [14]. Finite difference schemes and non-uniform grids
were used in [34] for solving fractional partial differential equations.

There are several typical maps that relate infinite and finite domains
to each other. Since it is well known that the solution of the unsteady
isothermal flow of a gas through a porous medium decays exponentially
as 𝑥 goes to infinity, it is expected that good results are given by using
of the following quasi-uniform map 𝑥 = 𝑥(𝜉), [35,36]

𝑥 = −𝑐 ⋅ ln(1 − 𝜉) , (6)

where 𝜉 ∈ [0, 1], 𝑥 ∈ [0,∞], and 𝑐 > 0 is a control parameter
which defines the grid point distribution in the original physical infinite
domain. The use of the logarithmic map (6) is especially convenient
because gives a slightly better resolution near to 𝑥 = 0, where the
solution has a transient behavior, with an increasing spatial resolution
going toward infinity.

Fig. 1 shows the quasi-uniform mesh 𝑥 = 𝑥𝑛, 𝑛 = 0, 1,… , 𝑁 defined
by (6) with 𝑐 = 5 and 𝑁 = 20.
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Fig. 1. Quasi-uniform mesh (6). We notice that the last mesh-point is 𝑥𝑁 = ∞.

By (6), a family of uniform grids 𝜉𝑛 = 𝑛∕𝑁 defined on finite interval
[0, 1] generates a one-parameter family of quasi-uniform grids 𝑥𝑛 =
𝑥(𝜉𝑛) on the semi-infinite interval [0,∞]. The BVP (3) is discretized by
introducing a uniform grid 𝜉𝑛 of 𝑁 + 1 nodes in [0, 1] such that 𝜉0 = 0
and 𝜉𝑛+1 = 𝜉𝑛 + ℎ with ℎ = 1∕𝑁 . In this way, 𝑥𝑛 is a quasi-uniform
grid in [0,∞]. The last interval in (6), namely

[

𝑥𝑁−1, 𝑥𝑁
]

, is infinite but
the point 𝑥𝑁−1∕2 is finite, because the non integer nodes are defined by
𝑥𝑛+𝑗 = 𝑥

(

𝜉 = 𝑛+𝑗
𝑁

)

, with 𝑛 ∈ {0, 1,… , 𝑁 − 1} and 0 < 𝑗 < 1. This map
allows to describe the infinite domain by a finite number of intervals.
The last node of such grid is placed at infinity, 𝑥𝑁 = 𝑥(𝜉𝑁 ) = ∞, so right
boundary conditions are taken into account correctly.

We approximate the values of the scalar variable 𝑢(𝑥) and its
derivative at mid-points of the grid 𝑥𝑛+1∕2, for 𝑛 = 0,… , 𝑁 − 1, using
non-standard difference discretizations

𝑢𝑛+1∕2 ≈
𝑥𝑛+3∕4 − 𝑥𝑛+1∕2
𝑥𝑛+3∕4 − 𝑥𝑛+1∕4

𝑢𝑛 +
𝑥𝑛+1∕2 − 𝑥𝑛+1∕4
𝑥𝑛+3∕4 − 𝑥𝑛+1∕4

𝑢𝑛+1 , (7)

𝑑𝑢
𝑑𝑥

|

|

|

|𝑛+1∕2
≈

𝑢𝑛+1 − 𝑢𝑛
2
(

𝑥𝑛+3∕4 − 𝑥𝑛+1∕4
) .

We emphasize that the key advantage of our non-standard finite differ-
ence formulation is to overcome the difficulty of the numerical treat-
ment of the boundary conditions at the infinity. In fact, the formulae
(7) use the value 𝑢𝑁 = 𝑢(∞), but not 𝑥𝑁 = ∞ and then, the boundary
conditions at infinity are taken into account in a natural way.

For the class of BVPs
𝑑𝐮
𝑑𝑥

= 𝐟 (𝑥,𝐮) , 𝑥 ∈ [0,∞) , (8)

𝐠 (𝐮(0),𝐮(∞)) = 𝟎 ,

where 𝐮(𝑥) is a 𝑑-dimensional vector with 𝓁𝑢(𝑥) for 𝓁 = 1,… , 𝑑 as
components, 𝐟 ∶ [0,∞)×R𝑑 → R𝑑 , and 𝐠 ∶ R𝑑×R𝑑 → R𝑑 , a non-standard
finite difference scheme on a quasi-uniform grid can be defined by using
the approximations given by (7) above, and it can be written as follows

𝐔𝑛+1 − 𝐔𝑛 − 𝑎𝑛+1∕2𝐟
(

𝑥𝑛+1∕2, 𝑏𝑛+1∕2𝐔𝑛+1 + 𝑐𝑛+1∕2𝐔𝑛
)

= 𝟎 ,

𝐠
(

𝐔0,𝐔𝑁
)

= 𝟎 , (9)

for 𝑛 = 0, 1,… , 𝑁 − 1, where

𝑎𝑛+1∕2 = 2
(

𝑥𝑛+3∕4 − 𝑥𝑛+1∕4
)

,

𝑏𝑛+1∕2 =
𝑥𝑛+1∕2 − 𝑥𝑛+1∕4
𝑥𝑛+3∕4 − 𝑥𝑛+1∕4

, 𝑐𝑛+1∕2 =
𝑥𝑛+3∕4 − 𝑥𝑛+1∕2
𝑥𝑛+3∕4 − 𝑥𝑛+1∕4

.

The finite difference formulation (9) has order of accuracy 𝑂(𝑁−2). Note
that the discrete system (9) is a system of 𝑑 (𝑁 +1) non linear equations
in the 𝑑 (𝑁 + 1) unknowns 𝐔 = (𝐔0,𝐔1,… ,𝐔𝑁 )𝑇 . For the solution of
(9) we can apply the classical Newton’s method along with the simple
termination criterion

1
𝑑(𝑁 + 1)

𝑑
∑

𝓁=1

𝑁
∑

𝑛=0
|𝛥𝓁𝑈𝑛| ≤ TOL , (10)

where 𝛥𝓁𝑈𝑛, for 𝑛 = 0, 1,… , 𝑁 and 𝓁 = 1, 2,… , 𝑑, is the difference be-
tween two successive iterate components, and TOL is a fixed tolerance.

4. Numerical results

In this Section, we present the numerical results obtained by solving
the mathematical model (3) using the non-standard finite difference

Fig. 2. Numerical solution for the problem (3) for 𝛼 = 0.5.

scheme (9) on the quasi-uniform grid defined by the logarithmic map
(6) with control parameter 𝑐 = 1. Now, let us rewrite the model (3) as a
first order system as follows

𝑑1𝑢
𝑑𝑥

= 2𝑢, 𝑥 ∈ [0,∞), (11)

𝑑2𝑢
𝑑𝑥

= − 2𝑥
√

1 − 𝛼1𝑢

2
𝑢,

with
1𝑢(0) = 1 , 1𝑢(∞) = 0 ,

or, in an equivalent form,

𝐮 = (1𝑢, 2𝑢)𝑇 ,

𝐟 (𝑥,𝐮) =
(

2𝑢,− 2 𝑥
√

1 − 𝛼1𝑢
2𝑢

)𝑇

,

𝐠(𝐮(0),𝐮(∞)) = (1𝑢(0) − 1, 1𝑢(∞))𝑇 ,

where 𝐮(𝑥) is a two-dimensional vector with components 𝓁𝑢(𝑥) for 𝓁 =
1, 2, and 𝐟 ∶ [0,∞) × R𝑑 → R𝑑 and 𝐠 ∶ R𝑑 × R𝑑 → R𝑑 , with 𝑑 = 2.

From a physical points of view, it is well known that the solution of
the unsteady isothermal flow of a gas through a porous medium decays
exponentially at infinity. Then, we choose as first guess for the Newton’s
iteration, and for the whole range of 𝛼, the following initial data
1𝑢(𝑥) = exp(𝜆𝑥) , 2𝑢(𝑥) = 𝜆 exp(𝜆𝑥),

with 𝜆 = −2, so that the iterative method converges within a fixed
precision in a small number of iterations. Moreover, for all tests we
consider a fixed tolerance TOL = 10−12 and 𝑁 = 2000.

Fig. 2 shows the numerical solution obtained for 𝛼 = 0.5. The
recovered value of the first order derivative of the solution at the origin
is 𝑑𝑢

𝑑𝑥 (0) = −1.191790644594857, obtained in 4 iterations.
Table 1 shows the comparison of the numerical results for the model

(11) for increasing values of 𝛼. For our method, the termination criterion
(10) is verified in 4 iterations, for the whole range of 𝛼. We choose
to report only the numerical results recently obtained by Parand and
al. in [13] because are more accurate then the others results found in
the literature. On the left, we report the results obtained by using the
finite difference scheme on quasi-uniform grid with first guess given by
(12) and 𝑁 = 2000. On the right, the numerical values computed by
the method based on rational Jacobi functions by Parand and al. The
numerical results are in agreement up to six or seven decimal places,
except the last value obtained for 𝛼 = 1.

Note that Parand et al. did not report the numerical solutions for
the parameter values 𝛼 = 0 and 𝛼 = 1. The parameter value 𝛼 = 1 is
special because, recalling the boundary condition 𝑢(0) = 1, the factor
√

1 − 𝛼𝑢(𝑥) in the differential equation is singular at the origin. It is
important to note that, in order to construct the numerical method (9),
we approximate the values of the scalar variable 𝑢(𝑥) and of its first order
derivative with the finite difference formulae (7) at the mid-points of the
grid, 𝑥𝑛+1∕2 for 𝑛 = 0, 1,… , 𝑁−1, by using the non-integer nodes, so that,
for 𝑛 = 0, we have
√

1 − 𝛼𝑢(𝑥) ≈
√

1 − 𝛼 (𝑐1∕2𝑢0 + 𝑏1∕2𝑢1) ≠ 0 .
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Table 1
Comparison of the values of 𝑑𝑢

𝑑𝑥
at point 𝑥 = 0 for increasing values of 𝛼.

𝛼 Quasi-uniform grid Rational Jacobi function [32]

0.0 −1.128379137175471
0.1 −1.139007180276811 −1.1390072061783004873998771
0.2 −1.150475464757216 −1.1504754862162862032929541
0.3 −1.162941442801447 −1.1629414582959125684491997
0.4 −1.176615655957026 −1.1766156666833352029373331
0.5 −1.191790644594857 −1.1917906497194217341228284
0.6 −1.208894181745888 −1.2088941745409140190494022
0.7 −1.228598484558365 −1.2285984736959215491454848
0.8 −1.252083822445984 −1.2520837901439178944596684
0.9 −1.281881374379111 −1.2818813222033575541260553
1.0 −1.328230894324459

Table 2
Maximum norm error for different values of 𝛼 and 𝑁 = 2000.

𝛼 𝐸∞(𝑁) 𝛼 𝐸∞(𝑁)

0.1 3.3408E−03 0.6 2.3003E−02
0.2 8.4401E−03 0.7 2.7790E−02
0.3 1.0531E−02 0.8 3.3027E−02
0.4 1.4428E−02 0.9 3.8878E−02
0.5 1.8570E−02 1.0 4.5714E−02

Fig. 3. Zoom of the numerical solutions for the BVP (3) for increasing values
of 𝛼 with 𝑁 = 2000 and a fixed tolerance TOL = 10−12.

Then, we do not have any difficulty in solving the model that is singular
at 𝑥 = 0. The found value of the first order derivative of the solution
at the origin is 𝑑𝑢

𝑑𝑥 (0) = −1.328230894324459, for 𝛼 = 1, obtained in 4
iterations with 𝑁 = 2000 and a fixed tolerance TOL = 10−12.

As said before, the solution 𝑢(𝑥; 𝛼 = 0) can be considered an
acceptable approximation to 𝑢(𝑥; 𝛼), over the whole range of parameter
𝛼. Then, we use this value for evaluating the error of the numerical
solution. We define the maximum norm error

𝐸∞(𝑁) = max
0≤𝑛≤𝑁

|𝑢𝑛 − 𝑈𝑛| ,

where 𝑢𝑛 = 𝑢(𝑥𝑛; 𝛼 = 0), for 𝑛 = 0,… , 𝑁 , is the analytical solution given
by (5) and 𝑈𝑛 ≈ 𝑢(𝑥𝑛; 𝛼) is the approximate of the solution computed by
the proposed numerical method for increasing values of 𝛼. In Table 2 we
report the maximum norm error for 𝛼 = 0.1,… , 1. Note that the smaller
value of the error 𝐸∞(𝑁) is found for 𝛼 = 0.1 and this value increases as
𝛼 → 1.

We notice that the numerical approximations of solution 𝑢(𝑥; 𝛼)
appear as a small perturbation of 𝑢(𝑥; 𝛼 = 0), and moreover, the
recovered values of the first derivative of the solution at initial point,
𝑑𝑢
𝑑𝑥 (0; 𝛼), tend to 𝑑𝑢

𝑑𝑥 (0; 𝛼 = 0) for the parameter values decreasing. See
Fig. 3.

5. Richardson’s extrapolation and error estimator

In the previous Section, we have presented the obtained numerical
results pointing out that they are in agreement up to six or seven decimal
places respect to numerical solution found recently in literature. In this
Section, we show how improve the accuracy of the computed solution
by the Richardson’s extrapolation [38].

The main aim of the Richardson’s extrapolation is to determine a
more accurate solution through subsequent refinements of the compu-
tational domain. On the spatial domain of the problem, we build a quasi-
uniform grid with a mesh-points number equal to 𝑁0 and proceed with
subsequent grid refinements. We denote with 𝑔, for 𝑔 = 0, 1,… , 𝐺, the
quasi uniform grids constructed with the corresponding number of mesh
points 𝑁𝑔 for 𝑖 = 0, 1,… , 𝐺. The grid 𝑔 = 0 is the grid built with the
smallest number of mesh points 𝑁0. The grid 𝑔 = 𝐺 is the grid built
with the largest number of mesh points 𝑁𝐺. The number of mesh points
𝑁𝑔+1 is chosen such that 𝑁𝑔+1 = 𝑟𝑁𝑔 with refinement factor 𝑟 = 2. It is
important to note that the grids 𝑔 and 𝑔 + 1 are constructed in such a
way that all points of the mesh 𝑔 coincide with the odd mesh points of
the grid 𝑔 + 1. On each grid, the numerical solution 𝑈𝑔 , 𝑔 = 0, 1,… , 𝐺
is computed using the non-standard finite difference method. In order
to reduce the calculations, we adopt a continuation strategy, in fact
we use the final solution obtained on the grid 𝑔 as initial guess for
calculating the solution on the grid 𝑔 + 1. where the new grid values
are approximated by linear interpolations. Now, we define the level of
the Richardson’s extrapolation by the index 𝑘 and, the two numerical
solutions related to the grids 𝑔 and 𝑔 + 1 at the extrapolated level 𝑘 by
𝑈𝑔,𝑘 and 𝑈𝑔+1,𝑘. Then, we use the following formula to calculate a more
accurate approximation at the level 𝑘 + 1

𝑈𝑔+1,𝑘+1 = 𝑈𝑔+1,𝑘 +
𝑈𝑔+1,𝑘 − 𝑈𝑔,𝑘

2𝑝𝑘 − 1
𝑘 = 0, 1,… , 𝐺 − 1 . (12)

Note that, with 𝐺 + 1 nested grids, we can apply Eq. (12) 𝐺 times by
executing 𝐺 Richardson’s extrapolations. For 𝑘 = 0, 𝑈𝑔+1,0 and 𝑈𝑔,0
represent the solutions on the grids 𝑔 and 𝑔 + 1 obtained by the non-
standard finite difference method and without any extrapolation. The
case 𝑘 = 1 is the classical single Richardson’s extrapolation. 𝑈𝑔,𝑘 and
𝑈𝑔+1,𝑘 represent the extrapolated value at the extrapolation level 𝑘 that
have a leading order of accuracy equal to 𝑝𝑘, 𝑈𝑔+1,𝑘+1 represents the
extrapolated value at the extrapolation level 𝑘+1, with order of accuracy
equal to 𝑝𝑘+1, The Table 3 shows the values of the first order derivative
of the numerical solution at point 𝑥 = 0 for 𝛼 = 0.5, obtained by the
Richardson’s extrapolation with 𝑁0 = 1000, 𝑁1 = 2000, 𝑁2 = 4000
and 𝑁3 = 8000 grid points and 𝐺 = 3. The last extrapolated value (not
reported in the table) is
2𝑈3,3 = −1.1917906497194208,

and can be considered as our benchmark value for 𝑑𝑢
𝑑𝑥 (0). The extrapo-

lated value is in agreement up to 14 decimal places respect to numerical
solution reported in Table 1.

In Table 4, we report the extrapolated values with 𝑁0 = 1000,
𝑁1 = 2000, 𝑁2 = 4000 and 𝑁3 = 8000 grid points and 𝐺 = 3, for 𝛼 = 0.
The last extrapolated value (not reported in the table) is
2𝑈3,3 = −1.1283791670955117,

and can be considered as our benchmark value for 𝑑𝑢
𝑑𝑥 (0). This value can

be compared with the value of the first order derivative at the origin of
the erfc function
𝑑𝑢
𝑑𝑥

(0) = −1.128379167095513.

5.1. A posteriori error estimate

In the investigation of the solutions of the differential equations
by the numerical methods, the study of the global error represents an
important tool of evaluation of the efficiency of the same method and
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Table 3
Extrapolated values at point 𝑥 = 0 for 𝑑𝑢

𝑑𝑥
(0) with 𝛼 = 0.5.

𝑁𝑔
2𝑈𝑔,0

2𝑈𝑔,1
2𝑈𝑔,2

1000 −1.191790629222544
2000 −1.191790644594857 −1.1917906497189612
4000 −1.191790648438259 −1.1917906497193931 −1.1917906497194219
8000 −1.191790649399129 −1.1917906497194191 −1.1917906497194208

Table 4
Extrapolated values at origin 𝑥 = 0 for 𝑑𝑢

𝑑𝑥
(0) with 𝛼 = 0.

𝑁𝑔 𝑈𝑔,0 𝑈𝑔,1 𝑈𝑔,2

1000 −1.128379047416873
2000 −1.128379137175471 −1.1283791670950036
4000 −1.128379159615479 −1.1283791670954819 −1.1283791670955137
8000 −1.128379165225502 −1.1283791670955097 −1.1283791670955117

the accuracy of the solution. In this Section, we describe a simple and
efficient a posteriori estimate of the global error, recently proposed
in [15]. The proposed global error estimate allows to solve the given
problem with a suitable accuracy requiring that the error satisfies a
suitable condition.

We define the global error 𝑒 by the following

𝑒 = 𝑢 − 𝑈 , (13)

that is the difference between the exact analytical solution 𝑢 and the
numerical approximation 𝑈 . Here, we consider the (13) in the simple
scalar case, and it can be applied component-wise at the given model.
It is well known that, when the numerical error is caused prevalently
by the discretization error and in the case of smooth enough solutions
the discretization error can be decomposed into a sum of powers of the
inverse of 𝑁 , [37]

𝑒 = 𝑢 − 𝑈 = 𝐶0

( 1
𝑁

)𝑝0
+ 𝐶1

( 1
𝑁

)𝑝1
+ 𝐶2

( 1
𝑁

)𝑝2
+⋯ , (14)

where 𝐶𝑘, for 𝑘 = 0, 1, 2,…, are coefficients that depend on 𝑢 and its
derivatives, but are independent on 𝑁 , and 𝑝𝑘, for 𝑘 = 0, 1, 2,…, are the
true orders of the error. The values of 𝑝𝑘 are usually positive integers
such that 𝑝0 < 𝑝1 < 𝑝2 < ⋯ . The value of 𝑝0 is called the asymptotic
order or the order of accuracy of the method or of the numerical solution
𝑈 .

We get an estimate of the global error by using Eq. (12)

𝐸𝑔+1,𝑘 =
𝑈𝑔+1,𝑘 − 𝑈𝑔,𝑘

2𝑝𝑘 − 1
, for 𝑔, 𝑘 = 0, 1, 2,… , 𝐺 − 1 . (15)

It is important to note that 𝐸𝑔+1,𝑘 gives the estimate of the global error
without knowledge of the exact solution, and, moreover, represents the
error estimate for the more accurate numerical solution 𝑈𝑔+1,𝑘 but only
on the grid points of 𝑁𝑔 . The (15) allows to solve the given problem
with a prefixed tolerance 𝜖 requiring that the obtained estimate satisfies
the following condition

‖𝐸𝑔+1,𝑘‖∞ ≤ 𝜖 , (16)

where the number 𝜖, with 0 < 𝜖 ≪ 1, is chosen according to the desired
level of accuracy. Then, if the inequality (16) holds true, the numerical
solution computed on the grid defined by 𝑁𝑔+1 is accepted, otherwise
we have to double the mesh points and repeat the computation.

For showing how the global error estimate (15) allows to solve the
given problem with a suitable accuracy, by way of example, we start
with 𝑁0 = 125 and 𝑁1 = 250 by setting the tolerance 𝜖 = 5 × 10−8 and
repeat the computation by doubling the number of spatial grid-intervals.
The proposed algorithm stops when𝑁6 = 8000, that is when the required
accuracy is achieved (16). In Fig. 4, we report the computation related
to the error estimator 𝐸𝑔+1,𝑘, for 𝑔 = 5, 𝑘 = 0.

The order errors 𝑝𝑘 that appear in the (15) are found in according to
the following formula

𝑝𝑘 =
log(|𝑈𝑔,𝑘 − 𝑢|) − log(|𝑈𝑔+1,𝑘 − 𝑢|)

log(2)
, (17)

Table 5
Orders 𝑝𝑘 of the solution 𝑢(𝑥) for increasing values of 𝑁 .

𝑁𝑔 𝑝0
125
250 2.001282207078140
500 2.001278914059869

1000 2.004204030790349
2000 2.017040547706095
4000 2.070403606498473
8000 2.321931644040558

16000

Table 6
Orders 𝑝𝑘 of the first derivative of the solution for increasing values of 𝑁 .

𝑁𝑔 𝑝0
125
250 2.001031623573736
500 2.000938146390995

1000 2.004282976598188
2000 2.017083514045066
4000 2.070386378299823
8000 2.321928878317238

16000

where 𝑢 is the exact solution, or, if the exact solution is unknown, as in
this case, a reference solution computed with a suitable large value of 𝑁 ,
evaluated at the same grid-points of the numerical solution. Adopting
the formula (17), where we replace 𝑢 by the numerical solution obtained
for 𝑁7 = 16,000, we find the values of the orders reported in the
following tables. Note that, in this way, the line related at 𝑁7 = 16,000
cannot be evaluated, then, in order to obtain the results reported in
Fig. 4, we choose 𝑝0 = 2.321931644040558 for the solution and 𝑝0 =
2.321925134936687 for its first derivative, that are the values found with
the solutions computed with 𝑁5 = 4000 and 𝑁6 = 8000. In addition,
by the results reported in Tables 5 and 6, we can conclude that 𝑝0 ≈ 2
represents the true order of the proposed finite difference method.

6. Concluding remarks

The main aim of this paper is to find an accurate solution for the
unsteady flow of gas through a semi-infinite porous medium. We pro-
pose a non standard finite difference method on a quasi-uniform grid for
solving the given problem and report a new numerical approximation of
the solution. We solve the given BVP on a semi-infinite interval without
imposing artificial boundary conditions on the truncated boundary
because we introduce a stencil that is built in such a way that the
boundary conditions at infinity are exactly assigned. In addition, the
presented method allows to obtain the numerical solution also for 𝛼 = 1.
Comparisons with some recently proposed results are carried out to
validate the accuracy of the obtained numerical results, and to show
the efficiency and the reliability of the proposed numerical method.
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Fig. 4. A posteriori error estimate for the field variable and its first order derivative for (11) with 𝛼 = 0.5, 𝑁5 = 4000 and 𝑁6 = 8000. 1𝐸6,0 and 2𝐸6,0 are the error
estimates provided by Eq. (15) of the solution and of the first order derivative, respectively.

Moreover, we improve the accuracy of the numerical results by the
Richardson’s extrapolation that allows to define an error estimator also
if the exact solution is unknown. The numerical solutions presented in
this paper result highly accurate and in excellent agreement with the
existing solutions available in the literature. The value of initial slope
𝑑𝑢
𝑑𝑥 (0) calculated for 𝛼 = 0.5 is −1.1917906497194208 accurate up to the
14 decimal places.
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