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ABSTRACT 

In this note we apply an iterative transformation method in order to find the 
numerical solution and, more important, to provide the numerical evidence of the 
existence and uniqueness for the free boundary value problem describing the optimal 
length determination for tubular flow reactors. The main idea is to introduce in the 
mathematical model a nonphysical parameter and then require partial invariance 

under an extended stretching group. The solution of the original problem can be 
obtained by requiring that the parameter transforms in the unity. Finally we report 
numerical results that show the existence and uniqueness of the solution and give us 
an approximation to the free boundary value involved. 

1. INTRODUCTION 

This note is devoted to testing a possible way to investigate numerically 
the existence and uniqueness of solutions of free boundary value problems. 
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The present approach can be used with problems of the type [5] 

(l.la) 

u(s) = P, $8) =Z(u(s),s), (l.lb) 

where f(*, *, *), g( *, o), and 2( ., .) satisfy appropriate smoothness conditions 
and s is the unknown free boundary, while 

u(s)=p and g(S) =z(u(S>>s) 

define the value of s. The interest in numerical investigation of the existence 
and uniqueness of solutions of the problem (1.1) arises because there are no 
general theorems about this question. 

In this note we will reconsider the engineering problem of determining 
the optimal length for tubular flow chemical reactors with axial missing [6]. 
The mathematical model describing an isothermal nth-order reaction in a 
homogeneous tubular Row reactor is given by 

g=Npe(g+Rd’), xE(O,S), uE[O,l], 

1 du 
u(0) - N-&(O) = 1, u(s) =T1 g(s) = 0. (1.2) 

Pf2 

In (1.2) x represents the dimensional length 0 < x < s, and U(X) is the ratio 
of the concentration of reactant at the point x to its concentration at the inlet 
x=0. N,, and A are respectively the dimensionless Peclet group and the 
reaction rate group. The boundary condition at x = 0 is due to the axial 
missing hypothesis [7], r represents the feed material of reactant at s, 
(0 < r < l), and the derivative condition at x = s physically means that the 
reactor is long enough for the reactant to react to form the product [Q]. 

Recently [2, 31, noniterative and iterative numerical transformation meth- 
ods based on invariance properties were introduced for free boundary value 
problems. Moreover, interesting applications to real world problems have 
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been already considered in [2-61. In [6] it was pointed out that the nonitera- 
tive transformation method can be used in order to obtain an upper bound 
for the value of s in (1.2). 

In the next section we explain how it is possible to solve the above 
problem numerically by the iterative transformation method. Moreover, 
within the numerical process we are able to test, by producing computational 
evidence, the existence and uniqueness question. 

2. ITERATIVE TRANSFORMATION METHOD AND 
NUMERICAL RESULTS 

The iterative transformation method we are going to use was applied first 
in [2] and formalized in [5]. Essentially we have to introduce a parameter in 
the mathematical model and to require partial invariance under an extended 
stretching group. For instance, instead of (1.2) we could consider 

$y~+Ku”), 

U(o)-;$o)=l, u(s) = /@-n)r, g(s) =o, (2.1) 
Pr 

where h is the parameter introduced. Then the differential equation and the 
two boundary conditions at x = s are invariant under the following stretching 
group: 

x * = Al -Ilx u* = Au, h” = A’-“h (2.2) 

This means that problems (2.1) with d’ff 1 erent values of u(O), du /dx(O), and 
h will transform one into another [l]. 

Let us explain how it is possible to obtain, for instance, the condition 
u(s) = h’/(‘-“)T. It is evident that u(s) = 7 was not invariant with respect to 
(2.2). We would like to have 

Au(s) = Ahe, and u*( s*) = h*“T. (2.3) 

We know that 

h* = Al-“/, and from (2.3) h*‘= Ahe. (2.4) 
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Then from (2.4) it follows that 

8(1-n)=l. (2.5) 

Now, in order to solve the problem (2.11, we can set and fix a value of s * > 0 
and we can choose a value of h* z 0. Therefore we have the boundary 
conditions we need at s * in order to integrate numerically inwards in [0, s *] 
and to compute 

h* du* 
A = u*(o) - N F*(O). 

Pe 
(2.6) 

Then from (2.2) it follows that 

s = An-Is* (2.7) 

Naturally, in order to obtain the numerical solution of (1.2), we have to 
find a zero of the function 

r( h*) = A”-‘h* - 1. (2.8) 

We note here that if we fix the value of s *, as we have to do, then A will be 
a function of h* only; i.e., A = h(h*). So we don’t know the functional form 
of rY.1. 

The existence and uniqueness of the solution of the problem (1.2) will 
correspond to having only one root of (2.7). No root means nonexistence, and 
more than one root nonuniqueness. Therefore we can also use a root finder 
like the secant method [lo]. 

Let us report an application of the ideas developed in the above text. We 
will consider values of the parameters involved in (1.2) as follows: 

Np, = 6, R = 2, 7 = 0.1, n=2. (2.9) 

Table 1 lists a selected range of values that confirm the existence and 
uniqueness of the solution. 

When h* is small compared with unity, numerical instability was ob- 
served on reducing the constant step size to - lo-05 and - lo-06. 
However, T(h*) seems to be monotone decreasing for both s * = 0.5 and 
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TABLE 1” 

h* T(h*) h* Uh*) 

- 0.75 - 5984.613063 0.16 1058.154587 
- 0.76 - 1368.9906 0.161 255.721316 
- 0.77 - 503.795863 0.1625 74.200431 
- 0.78 - 235.621159 0.165 22.313065 
- 0.79 - 127.433666 0.17 5.859518 
- 0.795 - 97.422061 0.175 2.476156 
-0.8 - 76.021749 0.18 1.214805 
- 0.85 - 12.843959 0.19 0.238909 
- 0.9 - 4.425216 0.2 - 0.144528 
- 0.95 - 2.300024 0.3 - 0.742239 
- 1.0 - 1.567991 0.5 - 0.840414 
-2.0 - 0.913088 1.0 - 0.876699 
-5.0 - 0.90409 5.0 - 0.895951 
- l.nOl - 0.902009 1.1~01 - 0.897993 
- l.DO3 - 0.90002 l.DO3 - 0.89998 

“Here we used s* = 1.0. The step size was AX = - 10-04. 

s* = 1.0 (see Table 1). Moreover, Table 1 shows that the function (2.7) has 

only one root. More integrations were made in order to exclude any other 

possible root of fQr*). 

Tables 2 and 3 report iterations computed with a secant method. The 

values of s and of du /dx(O) reported are in agreement respectively within 

two and three decimal places with that obtained in [6]. 

TABLE 2” 

k h,* IYh,*) u(O) 

0 0.09 1.188592 
1 0.08 609.404812 
2 9.011, - 02 1.182214 0.745998 - 0.698378 12.120779 
3 9.OD-02 1.175891 0.746341 - 0.699462 12.083047 
4 0.093661 0.397904 0.796571 - 0.873146 7.462572 
5 9.55D- 02 0.177273 0.814778 - 0.943989 6.162865 
6 9.71,-02 4.45~-02 0.826964 - 0.993969 5.383979 
7 9.75D-02 6.51~-03 0.830652 - 1.009514 5.161555 
8 9.76n-G02 2.81~-04 0.831266 -1.012121 5.125101 

9 9.76D-02 1.860-06 0.831293 -1.012238 5.123469 

10 9.76D-02 5.32~-10 0.831293 -1.012239 5.123458 

11 9.76D-02 l.O3D--15 0.831293 -1.012239 5.123458 

's* =0.5: Ax= -1D-03. 



110 RICCARDO FAZIO 

TABLE 3” 

0 0.18 1.202268 
1 0.19 0.235257 

5 0.195249 4.02~-05 0.83128 - 1.012281 5.121882 

6 0.19525 8.29o - 08 0.83128 - 1.012298 5.121648 

7 0.19525 3.41D - 12 0.83128 - 1.012298 5.121648 

“s*=l; Ax=-10-03. 

In all numerical integration we used the classical Runge-Kutta method of 
fourth order with constant step size. Moreover, reduction of step size was 
utilized to check the accuracy of the numerical results; see [B]. 

Application of the present methodology to an ill-posed free boundary 
value problem describing a nonlinear dynamical context is given in [5]. 
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