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Abstract

In this paper, within scaling invariance theory, we define and ap-

ply to the numerical solution of a similarity boundary layer model

an iterative transformation method. The boundary value problem to

be solved depends on a parameter and is defined on a semi-infinite

interval. Using our transformation method we are able to solve the

problem in point for a large range of the parameter involved. As

far as the accuracy of our numerical method is concerned, for two

specific values of the involved parameter, we are able to compare fa-

vorably the obtained numerical result for the so-calledmissing initial

condition to the exact solution reported by Crane [Z. Angew. Math.

Phys., 21:645-647, 1970].
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1 Introduction

The first definition and application of a transformation method dates back

to 1912 when Töpfer [34] published a paper where he reduced the solution

of the Blasius problem to the solution of a related initial value problem

(IVP). From that time non-Iterative Transformation Methods (ITM) have

been applied to several problems of practical interest within the applied

sciences. First of all, a non-ITM was applied to the Blasius equation with

slip boundary condition, arising within the study of gas and liquid flows

at the micro-scale regime [4, 28], see [12]. A non-ITM was applied also to

the Blasius equation with moving wall considered by Ishak et al. [23] or

surface gasification studied by Emmons [5] and recently by Lu and Law

[26] or slip boundary conditions investigated by Gad-el-Hak [4] or Martin

and Boyd [28], see Fazio [14] for details. In particular, within these ap-

plications, we found a way to solve non-iteratively the Sakiadis problem

[31, 32]. The application of a non-ITM to an extended Blasius problem

has been the subject of a recent manuscript [18]. A recent review dealing

with the non-ITM and its applications can be be found, by the interested

reader, in [16].

A first extension Töpfer’s to classes of problems in boundary layer the-

ory involving one or more physical parameters was considered by Na [29],

see also NA [30, Chapters 8-9] for an extensive survey on this subject.

Finally, an iterative extension of Töpfer’s algorithm has been intro-

duced, for the numerical solution of free BVPs, by Fazio [20]. This it-

erative extension has been applied to several problems of interest: free

boundary problems [20, 9, 10], a moving boundary hyperbolic problem

[6], Homann and Hiemenz problems governed by the Falkner-Skan equa-
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tion and a mathematical model describing the study of the flow of an in-

compressible fluid around a slender parabola of revolution [7, 8], one-

dimensional parabolic moving boundary problems [11], two variants of

the Blasius problem [12], namely: a boundary layer problem over moving

surfaces, studied first by Klemp and Acrivos [24], and a boundary layer

problem with slip boundary condition, that has found application in the

study of gas and liquid flows at the micro-scale regime [4, 28], parabolic

problems on unbounded domains [21] and, recently, see [13], a further

variant of the Blasius problem in boundary layer theory: the so-called

Sakiadis problem [31, 32]. Moreover, this iterative extension can be used

to investigate the existence and uniqueness question for different class of

problems, as shown for free BVPs in [9], and for problems in boundary

layer theory in [17]. A recent review dealing with, the derivation and ap-

plications of the ITM can be be found, by the interested reader, in [15].

A unifying framework, providing proof that the non-ITM is a special in-

stance of the ITM and consequently can be derived from it, has been the

argument of the paper [19].

2 Mathematical Model

In this section we report the boundary value problem (BVP) that we would

like to solve. This BVP is defined by

d3f

dη3
+ f

d2f

dη2
− β

(

df

dη

)2

= 0

(1)

f (0) = 0 ,
df

dη
(0) = 1 ,

df

dη
(η)→ 0 as η→∞ ,

where β is a given value verifying the limitations: −2 < β ≤ 2 for the free

convection flow over a vertical semi-infinite flat plate, see Liao and Pop

[25], and 2 < β < +∞ in the case of boundary layer flows over a stretching

wall, see Crane [3], Banks [1], Magyari and Keller [27], Brown and Stew-

artson [2] and Stuart [33]. Banks [1] showed that there is no solution for
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β = −2, and this was rigorously proved by Ingham and Brown [22]. More-

over, Ingham and Brown [22] reported that they found, numerically, the

existence of dual solutions, for the same value of β > 0. The second branch

of solution having negative values of the velocity
df
dη (η) in some regions

and this is not realistic from a physical point of view.

3 The ITM

In order to define our ITM we need to embedd the original BVP (1) into a

class of BVPs depending on a numerical parameter h

d3f

dη3
+ f

d2f

dη2
− β

(

df

dη

)2

= 0

(2)

f (0) = 0 ,
df

dη
(0) = h(1−δ)/σ ,

df

dη
(η)→ 1− h(1−δ)/σ as η→∞ ,

and consider the invariance of the governing differential equation and

of the prescribed initial conditions with respect to the extended scaling

group of point transformations

f ∗ = λf , η∗ = λδη , h∗ = λσh . (3)

It is easily seen, that the governing differential equation and the pre-

scribed initial conditions are invariant on condition that δ = −1. More-

over, the introduced scaling group involves the scaling of the fictitious

numerical parameter h, that have been used to force the initial conditions

to be invariant and the asymptotic boundary condition to be not invari-

ant. Now, we can integrate the governing equation in (1) written in the

star variables on [0,η∗∞], where η∗∞ is a suitable truncated boundary, with

initial conditions

f ∗(0) = 0 ,
df ∗

dη∗
(0) = h2/σ ,

d2f ∗

dη∗2
(0) = −1 , (4)
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in order to compute an approximation
df ∗

dη∗ (η
∗
∞) for

df ∗

dη∗ (∞) and the corre-

sponding value of λ by the equation

λ =

[

df ∗

dη∗
(η∗∞) + h∗2/σ

]1/2

. (5)

Once the value of λ has been computed by equation (5), we can find the

missed initial condition by the relation

d2f

dη2
(0) = λ−3

d2f ∗

dη∗2
(0) . (6)

In the ITM we proceed as follows: we set the values of σ and η∗∞ and in-

tegrate the IVP on [0,η∗∞]. Naturally, choosing h∗ arbitrarily we do not

obtain the value h = 1, however, we can apply a root-finder method, like

bisection, secant, regula-falsi, Newton or quasi-Newton root-finder, be-

cause the required value of h can be considered as the root of the implicit

defined, transformation function

Γ(h∗) = λ−σh− 1 . (7)

Of course, any positive value of σ can be chosen, and in the following, for

the sake of simplicity, we set σ = 4.

4 Numerical results

In this section, we report the numerical results obtained by the ITM. As a

root-finder we apply Newton method, with a termination criterion given

by |Γ(h∗)| < Tol with Tol = 10−9. Moreover, some preliminary numeri-

cal experiments allowed us to set, the truncated boundary value, η∗∞ = 5.

However, the application of Newton’s root-finder requires a more complex

treatment involving a system of six differential equations. In fact, in order

to apply the Newton’s root-finder, at each iteration, we have to compute

the derivative with respect to h∗ of the transformation function Γ. In our
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case, replacing equation (5) into (7), the transformation function is given

by

Γ(h∗) =
[

u∗2(η
∗
∞) + h∗1/2

]−2
h∗ − 1 , (8)

and its first derivative can be easily computed as

dΓ

dh∗
(h∗) =

[

u∗2(η
∗
∞) + h∗1/2

]−2 {
1− 2

[

u∗5(η
∗
∞) +

1

2
h∗−1/2

]

[

u∗2(η
∗
∞) + h∗1/2

]−1
h∗

}

.

(9)

Let us introduce the auxiliary variables uj (η) for j = 1,2, . . . ,6 defined

by

u1 = f , u2 =
df

dη
, u3 =

d2f

dη2
, u4 =

∂u1
∂h∗

, u5 =
∂u2
∂h∗

, u6 =
∂u3
∂h∗

.

(10)

Now, the related IVP is given by

du∗1
dη∗

= u∗2 ,

du∗2
dη∗

= u∗3 ,

du∗3
dη∗

= βu∗2u
∗
2 −u∗1u∗3 ,

(11)
du∗4
dη∗

= u∗5 ,

du∗5
dη∗

= u∗6 ,

du∗6
dη∗

= 2βu∗2u
∗
5 −u∗4u∗3 −u∗1u∗6 ,

u∗1(0) = 0 , u∗2(0) = h∗1/2 , u∗3(0) = −1 , u∗4(0) = 0 , u∗5(0) =
1
2h
∗−1/2 , u∗6(0) = 0.

In table 1 we report a sample iteration of the Newton’s method. As it is

easily seen from this table, as a result of the second order convergence of

Newton’s root-finder we get the chosen termination criterion verified after

only four iterates. Moreover, we found that the value of the missing initial

condition is given by
d2f
dη2

(0) = −0.627555.
Figure 1 shows the solution of the Liao-Pop’s problem in the particular

case when we set β = 0. As the considered mathematical model depends
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Table 1: Newton’s method iterations for h∗0 = 1.75. Here the D notation

stands for a double precision arithmetic.

iteration h∗ λ Γ(h∗)

0 1.75 1.108575 0.158719908

1 1.837475 1.157106 0.025010170

2 1.856888 1.167093 0.84D − 04

3 1.857586 1.167447 1.01D − 06

4 1.857587 1.167447 1.59D − 12

on a physical parameter we decided to list the obtained values of the miss-

ing initial condition versus this parameter. In table 2 we report the chosen

parameter values and the related missing initial conditions
d2f
dη2

(0).

5 Concluding remarks

In this paper we have defined and applied an ITM for the numerical so-

lution of the model studied by Liao and Pop [25]. This method, that is

based on the scaling invariance theory, solves a given BVP by solving a re-

lated sequence of IVPs and, therefore, it is an initial value method (like the

shooting method). We notice here that some exact solution were reported

by Crane [3]. For instance, when β = 1 he found the exact solution

f (η) = 1− exp(−η) , d2f

dη2
(0) = 1 .

Moreover, if β = −1 then he got the exact solution

f (η) =
√
2tanh

(

η/
√
2
)

,
d2f

dη2
(0) = 0 .

Therefore, as it is easily seen the numerical results reported on table 2 for

these two special cases are just approximations. We would like to remark
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Figure 1: Numerical results of the non-ITM for (1) with β = 0.

here, how in the case β = −1 we are taking the ITM to its natural limit. In

fact, in this specific case we have to get a zero value rescaling a non-zero

result. However, it is reassuring to see that the obtained value, namely

258D − 08, is very close to zero.
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the FABR grant of the University of Messina and by the GNCS of INDAM.
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Table 2: Numerical data and results.

β
d2f

dη2
(0) β

d2f

dη2
(0)

−1 −0.258D − 08 0.1 −0.672448

−0.9 −0.089014 0.2 −0.712024

−0.8 −0.169015 0.3 −0.754917

−0.7 −0.241805 0.4 −0.793768

−0.6 −0.308699 0.5 −0.831226

−0.5 −0.370678 0.6 −0.867413

−0.4 −0.428499 0.7 −0.902435

−0.3 −0.482755 0.8 −0.936387

−0.2 −0.533922 0.9 −0.969351

−0.1 −0.582389 1 −1.001400

0 −0.628475 .
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