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Abstract

In this paper we have defined the free boundary formulation for

two extended Blasius problems. These problems are of interest in

boundary layer theory and are deduced from the governing partial

differential equations by using appropriate similarity variables. The

computed results, for the so-calledmissing initial condition, are favourably

compared with recent results available in the literature.
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1 Introduction

In this paper, we define a free boundary formulation for two extended Bla-

sius problems available in literature. These two boundary value problems

(BVPs), which will be recalled in the next section, are both defined on a

semi-infinite interval. From a numerical viewpoint the application of the

asymptotic boundary condition cannot be enforced in a simple way. To

overcome this drawback several approaches have been studied.

The classical approach for such a condition is to replace it with the

same condition prescribed at a (finite) truncated boundary, as described

by Fox [14, p.92] or Collatz [7, pp. 150-151]. In many cases, this sim-

ple approach, used by trial and errors, result to be sufficiently accurate,

although sometimes it provides good results only for very large values of

the truncated boundary. Seldom a simple estimate of the error due to the

introduced truncated boundary is available, and for instance, in the case

of the Blasius problem an analysis based on the scaling properties of the

mathematical model is developed by Rubel [22].

A better approach, provided an asymptotic analysis to find the the ap-

propriate boundary conditions to be imposed at the truncated boundary

can be developed, was proposed by de Hoog and Weiss [8], Lentini and

Keller [17] and Marcowich [20, 21]. Since the imposed conditions are re-

lated to the asymptotic behaviour of the solution, then, usually, the ob-

tained numerical results are more accurate that those from the previous

approach. That is, smaller values of the truncated boundary are neces-

sary in this approach compared with the values required by the classical

approach.

The free boundary formulation main idea is simple to explain: we re-

place the asymptotic boundary conditions with two boundary conditions

given at an unknown free boundary that has to be determined as part of

the solution. This idea was formulated for the first time for the numerical

solution of the Blasius problem by Fazio [10]. Moreover, its application

has been proposed for the problems in boundary layer theory, see Fazio
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[11].

2 Two extended Blasius problems

The first extended Blasius problem was already considered by Schowalter

[24], Lee and Ames [16], Lin and Chern [19], Kim et al. [15], or Akcay and

Yükselen [1].
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where f and η are appropriate similarity variables and P verifies the con-

ditions 1 ≤ P < 2. Liao [18] has found analytically that the extended

Blasius problem (1) for P = 2 admit an infinite number of solutions and,

therefore, in his opinion can be considered as a challenging problem for

numerical techniques. Let us remark here, that the case P = 1 is the clas-

sical Blasius problem, see Blasius [5].

As far as the second extended Blasius problem is concerned, the math-

ematical model arises in the study of a 2D laminar boundary-layer with

power-law viscosity for Newtonian fluids and is given by, see Schlichting

and Gersten [23] or Benlahsen et al. [4],
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where f (η) is the non-dimensional stream function and P is a given posi-

tive value bigger than zero. Let us remark here, that when P = 1 the BVP

(2) reduces to the celebrated Blasius problem, see Blasius [5].

3



3 The free boundary formulation idea

Asmentioned before, in a free boundary formulationwe replace the asymp-

totic boundary conditions with two boundary conditions fixed at an un-

known free boundary that has to be determined as part of the solution.

For both the extended Blasius problems considered in this paper, a free

boundary formulation can be defined in the same way. We replace the

asymptotic boundary condition with the two conditions

df

dη
(ηǫ) ,

d2f

dη2
= ǫ , (3)

where ηǫ is an unknown free boundary and ǫ is an assigned small value.

Of course, we can verify if ηǫ goes to infinity as ǫ goes to zero. In order to

have a valid formulation, this should always be true.

4 Numerical results

In this section, we report the computed numerical results for the free

boundary formulations of the two extended Blasius problem.

4.1 First extended Blasius

Before considering to solve numerically the free boundary formulation of

the first extended Blasius problem it may be convenient to reformulate it

in normal form, sse Asher and Russel [2]. To this end, we introduce the

new variables θ = η/ηǫ, u1 = f (η), u2 =
df
dη (η),u3 =

d2f

dη2
(η) and u4 = ηǫ. So
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that, the free boundary formulation for the problem (1) is given by:
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For the numerical solution of the BVP (4) we used the bvp4c.m MATLAB

routine with initial iterate given by

u1 = θ , u2 = 2+θ , u3 = θ , u4 = 1 . (5)

As it is easily seen, these are coarse approximations of the actual solution

components.

As far as the first extended Blasius problem is concerned, in table 1

we list the chosen values of ǫ, the corresponding free boundary values ηǫ,

and the related missing initial conditions
d2f

dη2
(0) for the problem (1) with

P = 3/2. The obtained value of the missing initial condition can be com-

pared with the one 0.46905520505 obtained by Fazio, using an iterative

transformation method and reported in a recent preprint [13]. As it is eas-

ily seen, the two values agree up to the first six decimal places. Figure 1

shows the solution of the extended Blasius problem (1) with P = 3/2

4.2 Second extended Blasius

Once again, we rewrite the free boundary formulation of the second ex-

tended Blasius problem in standard form. We define the same variables as

before: θ = η/ηǫ, u1 = f (η), u2 =
df
dη (η),u3 =

d2f

dη2
(η) and u4 = ηǫ, so that, the
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Table 1: Numerical data and results.

ǫ ηǫ
d2f

dη2
(0)

0.1 2.708708 0.482527634

0.01 3.193357 0.469356138

0.0001 3.323660 0.469098357

0.00001 3.364091 0.469055438

0.000001 3.376487 0.469055050

0.0000001 3.380402 0.469055086

0.00000001 3.381636 0.469055082

0.000000001 3.382027 0.469055080

0.0000000001 3.382150 0.469055080

free boundary formulation for the problem (2) is

du1
dθ

= ηǫu2

du2
dθ

= ηǫu3

du3
dθ

= −ηǫ
u1u3

(P +1) ∗ ((P − 1) ∗ |u3|
P−2 + |u3|

P−1)
(6)

du4
dθ

= 0

f (0) =
df

dθ
(0) = 0,

df

dθ
(1) = 1

d2f

dθ2
(1) = ǫ ,

For the numerical solution of the BVP (6) we used the bvp4c.m MATLAB

routine with initial iterate again provided by the relations (5).

Here, we report the numerical results obtained for the free bound-

ary formulation of the second extension (2) of the Blasius problem for
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Figure 1: Numerical result obtained using the free boundary formulation

for (1) with P = 3/2 and ǫ = 1D − 06.

two values of the involved parameter. The first value of the parame-

ter is P = 1/2, and in this case for ǫ = 1D − 06 we find ηǫ = 56.654480

and
d2f

dη2
(0) = 0.331237479. The second considered value of the parame-

ter is P = 2, and in this case for ǫ = 1D − 06 we find ηǫ = 4.346478 and
d2f

dη2
(0) = 0.364773537. These values of the missing initial condition can be

compared with those found by Fazio [12], using a non-iterative transfor-
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mation method. Those values are 0.337170 for P = 1/2 and 0.364772 for

P = 3/2. In figure 2, for the reader convenience, we plot the two numerical

solution components f (η) and
df
dη (η).

5 Conclusions

In this paper we have defined the free boundary formulation for two ex-

tended Blasius problems. These problems are of interest in boundary layer

theory and are deduced from the governing partial differential equations

by using appropriate similarity variables. As far as the scaling invariance

theory is concerned, we refer the interested reader to the books by Bluman

and Cole [6], Barenblatt [3], or Dresner [9].

For both the extended Blasius problems, the computed results, for the

so-called missing initial condition, are favourably compared with recent

results available in the literature.
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