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BVPs on in�nite intervals

Let us consider the class of BVPs de�ned on an in�nite interval

du

dx
= f (x,u) x ∈ [0,∞)

(1)

g (u(0),u(∞)) = 0

where u(x) is a d−dimensional vector with u`(x) for ` = 1, . . . , d

as components. Moreover,

f : [0,∞)× IRd → IRd

g : IRd × IRd → IRd

http://www.unime.it
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Quasi-uniform grids

Let us consider the smooth strict monotone quasi-uniform maps

x = x(ξ), the so-called grid generating functions,

x = −c · ln(1− ξ) , (2)

and

x = c
ξ

1− ξ
, (3)

where ξ ∈ [0, 1], x ∈ [0,∞), and c > 0 is a control parameter.

A family of uniform grids ξn = n/N de�ned on interval [0, 1] gen-

erates one parameter family of quasi-uniform grids xn = x(ξn)

on the interval [0,∞).

http://www.unime.it
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x0 x19 x→∞

0 5 15

Figure 1 Quasi-uniform mesh for (2) with c = 5 and N = 20.

We notice that the last mesh-point is xN =∞.

Half of the intervals are in the domain with length approximately

equal to c and xN−1 ≈ c lnN for (2).
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The problem (1) can be discretized by introducing a uniform

grid ξn of N + 1 nodes in [0, 1] with ξ0 = 0 and ξn+1 = ξn + h

with h = 1/N , so that xn is a quasi-uniform grid in [0,∞).

The last interval in (2) and (3), namely [xN−1, xN ], is in�nite

but the point xN−1/2 is �nite, because the non integer nodes are

de�ned by

xn+α = x
(
ξ =

n + α

N

)
, (4)

with n = 0, 1, . . . , N − 1 and 0 < α < 1.

These maps describe the in�nite domain by a �nite number of

intervals. The last node is placed on in�nity so right boundary

condition is taken into account correctly.

http://www.unime.it
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We de�ne the values of u(x) on the mid-points of the grid

un+1/2 ≈
xn+1 − xn+1/2

xn+1 − xn
un +

xn+1/2 − xn
xn+1 − xn

un+1 . (5)

As far as the derivative, by considering u = u(ξ(x)), we write

du

dx

∣∣∣∣
n+1/2

=
du

dξ

∣∣∣∣
n+1/2

dξ

dx

∣∣∣∣
n+1/2

≈ (un+1 − un)

(ξn+1 − ξn)

2
(
ξn+3/4 − ξn+1/4

)
2
(
xn+3/4 − xn+1/4

)
then

du

dx

∣∣∣∣
n+1/2

≈ un+1 − un
2
(
xn+3/4 − xn+1/4

) . (6)

because 2
(
ξn+3/4 − ξn+1/4

)
= ξn+1 − ξn.

This formulae uses the value uN = u∞, but not xN =∞.

The two �nite di�erence approximations (5) and (6) have order

of accuracy O(N−2).
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A non-standard �nite di�erence scheme on quasi-uniform grids

A second order �nite di�erence scheme can be written as follows

Un+1 −Un − an+1/2f
(
xn+1/2, bn+1/2Un+1 + cn+1/2Un

)
= 0 ,

(7)

g (U0,UN) = 0 ,

where the d−dimensional vector Un is the numerical approxi-

mation to the solution u(xn) at the points of the mesh, and

an+1/2 = 2
(
xn+3/4 − xn+1/4

)
bn+1/2 =

xn+1/2 − xn
xn+1 − xn

cn+1/2 =
xn+1 − xn+1/2

xn+1 − xn
for n = 0, 1, . . . , N − 1 .

http://www.unime.it
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We notice that

bn+1/2 ≈ cn+1/2 ≈ 1/2 for all n = 0, 1, . . . , N − 2,

but when

n = N − 1, then bN−1/2 = 0 and cN−1/2 = 1.

On the contrary, we choose to set

bN−1/2 = bN−3/2 and cN−1/2 = cN−3/2

in order to avoid a suddenly jump for the coe�cients of the �nite

di�erence scheme.

As it will be clear from the results reported in the next section

this produces a much smaller error in the numerical solution of

the system at xN .

http://www.unime.it
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The method (7) is a nonlinear system of d · (N + 1) equations

in the d · (N + 1) unknowns U = (U0,U1, . . . ,UN)T .

For the solution of (7) we can apply the classical Newton's

method along with the simple termination criterion

1

d(N + 1)

d∑
`=1

N∑
n=0

|∆Un`| ≤ TOL ,

where ∆Un`, for n = 0, 1, . . . , N and ` = 1, 2, . . . , d, is the

di�erence between two successive iterate components and TOL

is a �xed tolerance.

The results listed in the next sections were computed by setting

TOL = 1E− 6.

http://www.unime.it
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The Falkner-Skan model

The Falkner-Skan model of boundary layer theory is given by

d3u

dx3
+ u

d2u

dx2
+ P

[
1−

(
du

dx

)2
]

= 0

(8)
u(0) =

du

dx
(0) = 0,

du

dx
(∞) = 1 .

It is a BVP de�ned on a semi-in�nite interval.

We rewrite the (8) as a �rst order system with

du1
dx

= u2

du2
dx

= u3

du3
dx

= −u1u3 − P (1− u22) .

http://www.unime.it
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Then, we have

u = (u1, u2, u3)
T

f(x,u) =
(
u2, u3,−u1u3 − P (1− u22)

)T
g (u(0),u(∞)) = (u1(0), u2(0), u2(∞)− 1)T ,

with the boundary conditions

u1(0) = u2(0) = 0 , u2(∞) = 1 .

For all values of N we used the initial iterate

u1(x) = u2(x) = 1/2 , u3(x) = 10−2 .

http://www.unime.it
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u1(x)

u2(x)

u3(x)

Figure 2 Numerical solution of Falkner-Skan model with P = 1

obtained with the map x = x(ξ) de�ned by x = −c · ln(1 − ξ)

with c = 5 for N = 80.
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Table 1: Numerical approximation of
d2u

dx2
(0) and

d2u

dx2
(∞).

N iter
d2u

dx2
(0)

d2u

dx2
(∞)

20 6 1.238724 −0.21 · 10−7

40 5 1.234124 0.24 · 10−7

80 5 1.232972 −0.33 · 10−7

160 5 1.232684 0.14 · 10−7

320 5 1.232612 −0.25 · 10−7

640 5 1.232594 0.39 · 10−7

1280 5 1.232589 0.33 · 10−7
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Table 2: Comparison of
d2u

dx2
(0) and free or truncated boundary (xε and x∞

respectively) for P = 0.5 and P = 1.

Nasr et al. [1] Fazio [2] Asaithambi [3] This paper

Chebyshev method Free BF Finite di�erence Quasi-uniform

P x∞
d2u

dx2
(0) xε

d2u

dx2
(0) x∞

d2u

dx2
(0) xN

d2u

dx2
(0)

0.5 3.7 0.927805

0.5 7.4 0.927680 5.09 0.927680 5.67 0.927682 ∞ 0.927681

1 3.5 1.232617

1 7. 1.232588 5.19 1.232588 5.14 1.232589 ∞ 1.232589

[1] H. Nasr et al. Int. J. Computer Math., 33 : 127− 132, 1990.

[2] R. Fazio. Calcolo, 31 : 115− 124, 1994.

[3] A. Asaithambi. Appl. Math. Comput., 92 : 135− 141, 1998.
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A pile in soil

Let u(x) be the de�ection of a semi-in�nite pile embedded in soft

soil at a distance x below the surface of the soil. The di�erential

equation for the movement of the pile is given by

d4u

dx4
= −P1

(
1− e−P2u

)
, x ∈ [0,∞) ,

(9)
d2u

dx2
(0) = 0 ,

d3u

dx3
(0) = P3 , u(∞) =

du

dx
(∞) = 0 ,

where P1 and P2 are positive material constants. We rewrite the

(9) as a �rst order system

du1
dx

= u2 ,
du2
dx

= u3 ,

du3
dx

= u4 ,
du4
dx

= −P1

(
1− e−P2u1

)
.

http://www.unime.it
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Then, we have

u = (u1, u2, u3, u4)
T

f(x,u) =
(
u2, u3, u4,−P1

(
1− e−P2u1

))T
g (u(0),u(∞)) = (u3(0), u4(0)− P3, u1(∞), u2(∞))T

with the boundary conditions

u3(0) = 0 , u4(0) = P3 , u1(∞) = 0 , u2(∞) = 0 .

For all values of N we used the initial iterate

u1(x) = u2(x) = u3(x) = u4(x) = 1

and

P1 = 1, P2 =
1

2
and P3 =

1

2
.

http://www.unime.it
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u1(x)

u2(x)

u3(x)

u4(x)

Figure 3 Numerical solution of pile model (9) obtained with the

map x = x(ξ) de�ned by x = −c · ln(1 − ξ) with c = 5 for

N = 80.
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Table 3: Numerical approximation of u(0) and
du

dx
(0).

N iter u(0) −du
dx

(0)

20 5 1.420337 0.807289

40 5 1.421243 0.807934

80 5 1.421469 0.808094

160 5 1.421526 0.808135

320 5 1.421540 0.808145

640 5 1.421544 0.808150

1280 5 1.421544 0.808150
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Table 4: Comparison of u(0),
du

dx
(0) and free or truncated boundary (xε and

x∞ respectively) for the pile problem.

Lentini and Keller [1] Fazio [2] This paper

Asymptotic BCs x∞ = 10 Free BF xε = 17.75 Quasi-uniform xN =∞

u(0)
du

dx
(0) u(0)

du

dx
(0) u(0)

du

dx
(0)

1.4215 −0.80814 1.42154 −0.808144 1.421544 −0.808145

[1] M. Lentini and H. B. Keller. SIAM J. Numer. Anal., 17 : 577−604, 1980.

[2] R. Fazio. Calcolo, 31 : 115− 124, 1994.
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Concluding Remarks

Let us discuss, at the end of this work, a possible way to extend

the �nite di�erence schemes on quasi-uniform grids to the nu-

merical solutions of problems de�ned on the whole real line. For

these problems, all boundary conditions are imposed at ±∞. In

such a case it is possible to use the tangential quasi-uniform grid

xn = c · tan
(nπ

2N

)
,

where c > 0 is a control parameter.
In fact, if n = −N,−N + 1, · · · − 1, 0, 1, · · · , N − 1, N , then
this grid covers the whole in�nite line, and in particular we have
that x−N = −∞.
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