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Abstract

In this paper, we undertake a mathematical and numerical study of liq-

uid dynamics models in a horizontal capillary. In particular, we prove that

the classical model is ill-posed at initial time, and we recall two different

approaches in order to define a well-posed problem. Moreover, for an aca-

demic test case, we compare the numerical approximations, obtained by an

adaptive initial value problem solver based on an one-step one-method ap-

proach, with new asymptotic solutions. This is a possible way to validate

the adaptive numerical approach for its application to real liquids.
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tions, adaptive numerical method.

AMS Subject Classifications. 34A12, 65L05, 76D45.

1 Introduction

In this paper, we consider three mathematical models that describe the dynam-

ics of a liquid inside an open ended capillary. In particular, we prove that the

classical model is ill-posed at initial time, and we recall two different approaches

in order to define a well-posed problem. A first approach is to modify the usual

initial conditions, see Bosanquet [1]. The second approach is to change the gov-

erning differential equation by taking into account the flow effects outside the

capillary, see Szekely et al. [27], . Finally, with reference to an academic test

case presented in Cavaccini et al. [5], we compare the numerical approximations,

obtained by an adaptive procedure based on an one-step one-method initial value

problem solver, with the solutions derived by an asymptotic study. This is a pos-

sible way to validate the adaptive numerical approach for its application to real

liquids. Le us note that for the same academic test case we are able to derive

Washburn approximation. Washburn solution is considered as a valid asymptotic

approximation, although it fails to describe the initial transient since it neglects

the inertial effects which are relevant at the beginning of the process. In fact,

this approximation has been confirmed by a lot of experimental and theoretical

studies and also by molecular dynamic simulations, see for instance Martic et al.

[23, 22, 21], and lattice-Boltzmann computations, see Chibbaro [6] or Diotallevi

et al. [10]. Among the studies concerning Washburn solution we can quote: Fisher

and Lark [16] for liquids flowing in thin tubes, Mann et al. [18], Romero and Yost

[24], Rye et al. [25], and Yost et al. [29] for surface grooves, and Rye et al. [26]

for micro-strips. On the other hand, several studies have been devoted to capillary
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rise, dynamics of menisci, wetting and spreading as well as accommodating the

no-slip condition of contact line motions, see for instance the papers by Clanet

and Quéré [7], Zhmud et al. [30], and the recent book by de Gennet et al. [9] and

the references quoted therein. Moreover, Dussan [11], de Gennes [8], and Leger

and Joanny [20] provide useful reviews.

With reference to figure 1, we consider a liquid freely flowing within a hori-

zontal cylindrical capillary of radius R. At the left end of the capillary we have a

O R z

L

s

Figure 1: Top frame: geometrical set-up of a horizontal capillary section. Bottom

frame: definition of the contact angle ϑ .

reservoir filled with the penetrant liquid. The model governing the dynamics of a

liquid inside an open ended horizontal capillary is given by

ρ
d

dt

[

ℓ
dℓ

dt

]

= 2
γ cosϑ

R
−8

µℓ

R2

dℓ

dt
(1)
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where ℓ is the moving liquid-gas interface coordinate, dℓ/dt can be interpreted as

the average axial velocity. Moreover, ρ , γ , and µ are the liquid density, surface

tension and viscosity, respectively. The contact angle between the liquid and the

capillary wall is denoted by ϑ , with 0◦ ≤ ϑ << 90◦. The left-hand side term

describes the inertial resistance. The effect of inertia are usually significant only

in the early stages of penetration or when the radius R is large and/or µ is small.

The first term of the right-hand side is the capillary driving force, the second one

gives the viscous resistance of the liquid in the capillary.

For the mathematical derivation of the governing equation we refer to Cavac-

cini et al. [5] and the references quoted therein. Extended scaling invariance

properties of the model (1), as well as their numerical applications, have been

studied by Fazio et al. [14]. Recently, Fazio and Iacono [12] defined a model

that takes into account the action of the entrapped gas in a closed-end capillary.

Preliminary results related to the main topic of this paper were presented at the

9th SIMAI Conference, held in Rome, [15].

The present study belongs to the outcome of a joint research project carried

on in collaboration with the Italian Alenia Aeronautics Company, see [4]. This

research project was motivated by the non-destructive control named “liquid pen-

etrant testing” used in the production of airplane parts and in many industrial

applications where the detection of open defects is of interest. Liquid penetrants,

involving capillary action, are used to locate surface-accessible defects in solid

parts.
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2 Well-posed models

Rewriting equation (1), and assuming that, at initial time, the liquid starts to flow

inside the capillary from rest, we have















ℓ
d2ℓ

dt2
= 2

γ cosϑ

ρR
−8

µℓ

ρR2

dℓ

dt
−
(

dℓ

dt

)2

,

ℓ(0) =
dℓ

dt
(0) = 0 .

(2)

The right-hand side of the governing differential equation is a function of ℓ and its

first derivative, that can be abbreviated by F :

F

(

ℓ,
dℓ

dt

)

= 2
γ cosϑ

ρR
−8

µℓ

ρR2

dℓ

dt
−
(

dℓ

dt

)2

, (3)

so that we can rewrite the governing equation in (2) as

ℓ
d2ℓ

dt2
= F

(

ℓ,
dℓ

dt

)

(4)

to be taken with zero initial conditions. Therefore, by evaluating F at the initial

time we get

F(0,0) = 2
γ cosϑ

ρR
, (5)

which is positive and ensures that the fluid flows inside the capillary. This implies

that, at the same initial time, the left-hand side of the governing equation in (2)

should be positive as well. However, because of the initial conditions the left-hand

side of the governing equation in (2) must be zero which hints at a contradiction.

However, this alone does not invalidate the derived modeling. In fact, the consid-

ered equation may possibly hold for all t > 0, and there may be a solution which

assumes the required initial values. Here we show that, for the considered model,

this is not the case.
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In order to understand way our model is ill-posed, we examine the simple

model defined by











ℓ
d2ℓ

dt2
=C

ℓ(0) =
dℓ

dt
(0) = 0 ,

(6)

where C is a positive constant. Now, if we assume that a solution ℓ(t) of (6) exists

with ℓ(t)> 0 for t > 0, then solving for the second derivative and multiplying both

sides by the first derivative yields

dℓ

dt

d2ℓ

dt2
=C

dℓ

dt
ℓ

. (7)

By considering solutions on the interval [δ , t] with δ > 0, we integrate both sides

of (7), with respect to t, to get

1

2

[

dℓ

dt
(t)

]2

− 1

2

[

dℓ

dt
(δ )

]2

= C [lnℓ(t)− lnℓ(δ )] . (8)

Fixing t and taking the limit as δ → 0+, the left-hand side of equation (8) takes a

positive finite value, but the right-hand side goes to infinity which is a contradic-

tion. Therefore, there is no solution to the problem (6). This means that also our

problem with zero initial data is ill-posed.

Now, we define two different ways to revise the considered model in order to

get a well-posed one.

As first revision, we can modify the given initial conditions. Assuming that,

at the initial time, the liquid is inside the capillary we obtain the Bosanquet model

[1]















ρ
d

dt

[

ℓ
dℓ

dt

]

= 2
γ cosϑ

R
−8

µℓ

R2

dℓ

dt

ℓ(0) = R ,
dℓ

dt
(0) =

(

2
γ cosϑ

ρR

)1/2

,

(9)
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derived by rewriting the momentum balance for the moving column neglecting

viscosity and external hydrodynamics. As shown below by numerical results, the

Bosanquet velocity gives an accurate upper estimate of the initial velocity of liquid

penetration into a horizontal capillary.

The second revision was already done by Szekely et al. [27] by taking into ac-

count the flow effects outside the capillary. These authors introduced a coefficient

of apparent mass c = O(1) and obtained the following model











ρ
d

dt

[

(ℓ+ cR)
dℓ

dt

]

= 2
γ cosϑ

R
−8

µℓ

R2

dℓ

dt

ℓ(0) =
dℓ

dt
(0) = 0 .

(10)

Note that, starting with zero velocity, the liquid accelerates and attains a maximum

velocity within a short interval. The most challenging model, by a numerical

viewpoint, is the one proposed by Szekely et al. Therefore, we discuss numerical

results comparing them with asymptotic ones obtained by solving an academic

test case presented in [5]. Several numerical computations, related to real liquids,

can be found, by the interested reader, in the paper by Cavaccini et al. [5]. Further

numerical results were presented at the ICIAM congress held in Zurich, 16-20

July 2007, see Fazio et al. [13].

3 Academic test case

As an academic test case, we report on the numerical results for the model











d

dt

[

(ℓ+R)
dℓ

dt

]

= 1− ℓ
dℓ

dt
,

ℓ(0) =
dℓ

dt
(0) = 0 ,

(11)

derived by equation (10) setting the following parameters

c = ρ = 2
γ cosϑ

R
= 8

µ

R2
= 1 . (12)
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Now, we present asymptotic solutions of the model (11) that will be used, in the

following, in order to validate the numerical approximations, of the models (9) and

(10) with parameters defined in (12), obtained by an adaptive numerical approach.

3.1 Washburn equation

For very small radii, viscous forces are dominant, the inertial terms at the left-

hand side of the (11) can be neglected, and one obtains the differential equation,

named Washburn one [28]. As far as our academic test case is concerned, by using

the relations (12), the Washburn equation specializes to

ℓ
dℓ

dt
= 1 . (13)

By integrating, taking into account the initial condition ℓ= 0, at t = 0, we get the

solution

ℓW (t) = (2t)1/2 , (14)

valid only for t >> 8. Note that, at initial time

dℓW

dt
(0) = +∞ ,

and this is an evident paradox [19].

3.2 Budd and Huang asymptotic analysis

An asymptotic analysis has been developed by Budd and Huang [2], who used

the method of matched asymptotic expansions to tackle the problem (11). Now,

observe that the equation (11) has a first integral given by

(ℓ+R)
dℓ

dt
= t − ℓ2

2
. (15)
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In the inner region, where t is of order R, Budd and Huang rescaled the solution

and then developed a series expansion of ℓ in powers of R, obtaining the asymp-

totic solution

ℓin(t) =
√

R2 + t2 −R valid for 0 < t ≪ 1 . (16)

In the outer region, they ignored the contributions involving R to leading order

and integrated again. This led to the following asymptotic formula

ℓout(t) =
√

2
√

t −1+ exp(−t) valid for R ≪ t . (17)

The two expansions match when R ≪ t, where they both have the form

ℓ(t)≈ t .

4 Validation of numerical results

In this section, we show the numerical approximations of the mathematical mod-

els, presented in section 2. These results, obtained by an adaptive approach de-

veloped by Jannelli and Fazio [17] and briefly described in the next section, are

validated by comparing with the above asymptotic solutions.

First, we consider the numerical results of the Bosanquet model (9), with the

conditions (12) and R = 0.01. In this case, at the beginning of the process, there

is not fast transitory of first derivative, the liquid is inside the capillary and it has

a maximum velocity that, after decreases. Therefore, even a simple integration

with constant step size would be suitable in this case. In the top frame of figure 2,

we show the numerical solution ℓ and its first derivative. The step-size selection

∆tk and the monitor function η(tk) are reported in the middle and in the bottom

frames, respectively. For the definition of the monitor function, as well as details

concerning the adaptive procedure, see the next section below. Note that, in this
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R = 0.01
 l1

 l2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

d
t

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

e
ta

Figure 2: From top to bottom: ℓ(t) and its first derivative, adaptive step-size se-

lection ∆tk, and monitor function η .

case our adaptive strategy used only 92 steps, with no rejections, to complete the

integration in [0,50]. The minimum value of ∆t used was 0.25.

Now, we report the numerical results of the academic test case (11) with

R = 0.01. In the top frame of figure 3, we show the numerical solution ℓ and

its first derivative. The step-size selection ∆tk and the monitor function η(tk) are

reported in the middle and in the bottom frames. It is easy to note, how, the

adaptive procedure modifies the time step in relation to the value of the monitor

function. Initially, at the beginning of the process, the adaptive procedure reduces

∆tk corresponding to first derivative fast transitory. Then, when the solution be-

comes smooth, the procedure amplifies the step-size. Our adaptive strategy used

1603 successful steps, plus 10 rejections, to complete the integration in [0,50].

For this test case, the minimum value of ∆t used was about 10−12.

In the figure 4, we report the numerical solutions obtained on the time interval
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R = 0.01
 l1

 l2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

d
t

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

e
ta

Figure 3: Adaptive step-size results. From top to bottom: ℓ(t) and its first deriva-

tive, adaptive step-size selection ∆tk, and monitor function η .

[0,1]. The solution of Bosanquet model (9) is shown in the left frame, and the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

t

l

 

 

 l1

 l2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

t

l

 

 

R = 0.01

 l1

 l2

Figure 4: Left frame: model (9) numerical solution: ℓ(t) and its first derivative.

Right frame: model (10) adaptive step-size solution: ℓ(t) and initial transient of

its first derivative.

solution of model (10) developed by Szekely et al. is in the right frame. The
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physical parameters are given by (12) and R = 0.01. Note that, at the initial steps

of the process, the model (10) describes the fast transient of first derivative of

ℓ, developed by the increase of the velocity of the liquid entering the capillary.

This large acceleration does not exist in the solution of the model (9), because, at

initial time, the liquid is already inside the capillary. Note that, from the bottom

frame of figure 4 the liquid entering the capillary is accelerated by capillary force

(ℓ ≈ t2 initially); but, soon thereafter the capillary force is compensated by the

viscous drag so that a steady-state can be achieved (ℓ ≈ t1/2 for t large enough).

Moreover, we can notice how the Bosanquet velocity is an upper bound for the

velocity of the Szekely et al. model.

In the top frame of figure 5, we report the asymptotic solution ℓin of (16),

and its derivative, obtained for very short times. The numerical approximation,

obtained by our adaptive procedure, is shown in the bottom frame of figure 5.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

l

 

 

 l1

 l2

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

l

 

 

 l1

 l2

Figure 5: Left frame: asymptotic solution: 102 · ℓin(t) and its derivative. Right

frame: adaptive step-size results: 102 · ℓ(t) and its first derivative.

The asymptotic solution ℓout , given by (17), and its first derivative, with the

numerical approximations are compared, for large times, in figure 6. The solution

of the Washburn equation ℓW (t) is plotted for comparison. This figure shows a

good agreement for large times between the two asymptotic solutions.
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Washburn

Figure 6: Left frame: asymptotic solution: ℓout(t) and its derivative obtained for

R << t. Right frame: adaptive step-size results: ℓ(t) and its first derivative. The

solution of the Washburn equation ℓW (t) is shown for comparison.

5 Numerical method and adaptive procedure

In this section we describe the considered adaptive procedure, developed by Jan-

nelli and Fazio [17], used with the classical fourth order Runge-Kutta’s method [3,

p. 166]. For the test case defined above we used the following monitor function

η(tk) =

∣

∣

∣

∣

dℓ

dt
(tk +∆tk)−

dℓ

dt
(tk)

∣

∣

∣

∣

Γk

(18)

where ∆tk is the current time-step and

Γk =











∣

∣

∣

∣

dℓ

dt
(tk)

∣

∣

∣

∣

if
dℓ

dt
(tk) 6= 0

ε otherwise ,

(19)

with 0 < ε ≪ 1. The above monitor function has been chosen because, as far as

the solution of the model (10) is concerned, we have found numerically that, for

small values of R, initially the first derivative of ℓ(t) has a fast transient.

For the adaptive procedure we enforced the following conditions: ∆tmin ≤

∆tk ≤ ∆tmax with ∆tmin = 10−15, ∆tmax = 1, and ηmin ≤ η(tk)≤ ηmax with ηmin =

13
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10−2, ηmax = 10 ηmin, and ε = 10−9. Moreover, the time step is modified in two

cases: when η(tk) < ηmin we use ∆tk+1 = 2 ∆tk as the next time step, whereas if

η(tk)> ηmax, then we repeat the same step using ∆tk = ∆tk/2. Full details on the

adaptive strategy, as well as alternative monitor functions, can be found by the

interested reader in [17].

6 Concluding remarks

We have proposed a mathematical and numerical study of liquid dynamics models

in a horizontal capillary. In this context we proved that the classical model is ill-

posed at initial time, and we recall two different approaches in order to define a

well-posed problem. For the first approach we modify the given initial condition

whereas for the second we change the differential equation.

Finally, we apply an adaptive strategy, based on an one-step one-method ap-

proach, for the problem under study and we compare the obtained numerical ap-

proximations with new asymptotic solutions. This is a possible way to validate

the adaptive numerical approach for its application to real liquids.
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