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Abstract

Based on bio-chemical ground we derive an aquarium mathematical model useful for
predicting dangerous situations as well as for the startup cycle. This model is a basic step
toward a more complex advection–diffusion–reaction model in 3D space variables: it
defines the reaction part of the more complex partial differential equations model.
For the numerical solution of our aquarium model we apply a low complexity second
order method combined with a simple adaptive step-size selection procedure. The low
accuracy and complexity of the resulting numerical algorithm are motivated because
of the high complexity of the final 3D model. The reported numerical results, and com-
parisons with the know-how available in literature, show the validity of the proposed
model.
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1. Introduction

The main contribution of this paper is the formulation of a mathematical
model that can be used to simulate the bio-chemical evolution of a prototype
aquarium. This model can be considered as the reaction part of a more com-
plex advection–diffusion–reaction model in 3D space variables. To validate
the proposed model we report on results obtained for five numerical tests per-
formed by using a low complexity second order numerical method coupled
with a simple step-size selection procedure. Both the low complexity method
and the simple adaptive mesh selection procedure were considered in view of
the huge computational task represented by the 3D final model. We are inter-
ested to the evolution of the system for a long period, let us say 10 days or
8 weeks. Those are the typical intervals between two water changes, and the
time required for the start-up of an efficient aquarium. Fishes may be intro-
duced during the start-up period, but at higher risk and in any case they should
be feed minimally and the water properties monitored constantly.

The bio-chemical cycle in any aquarium takes the following steps: (1) the
fishes produce waste products that, with the residual food, are transformed
into ammonium hydroxide (NH3), lethal for the fishes at determined concen-
trations, and its derived ammonia (NH4) which by contrast is not so danger-
ous; (2) provided the availability of oxygen Nitrosomonas, Nitrosospira, and
other autotropic bacteria (see [11]), take NH3 and NH4 and produce nitrogen
dioxide (or nitrous acid NO2) also known as nitrite salts which is lethal for the
fishes at low concentrations, and has to be transformed as soon as possible; (3)
that is the duty of Nitrobacter, Nitrospira, and other suitable bacteria, (see
[11]), that from NO2 and oxygen derive nitrate (NO3); (4) nitrate are used by
algae and plants for their living, in particular plants at fast grow like Cerato-

phyllum demersum, Egeria densa, Ludwigla palustris or others, for their living;
(5) finally, algae and plants are heated by some species of fishes: Xyphophorus
variatus, Xyphophorus helleri, etc.

Nitrification is a microbial process by which reduced nitrogen compounds
(primarily ammonia) are sequentially oxidized to nitrite and nitrate. The nitri-
fication process is primarily accomplished by two groups of autotropic nitrify-
ing bacteria that can build organic molecules using energy obtained from
inorganic sources, in this case ammonia or nitrite. Recent studies on nitrifying
biofilms suggest that Nitrosomonas and Nitrobacter are the most active species
at high ammonia and oxygen concentrations while at low ammonia concentra-
tion the Nitrosospira and Nitrospira are the prevalent species, [8]. A corre-
sponding concentration decrease in dissolved oxygen can be noted within
this process, [9, pp. 205–211]. Uptake of nitrogen in the form of nitrate, nitrite
or ammonia is normal in the nitrogen cycle within a closed environment like an
aquarium. Because of the slow growth rate of nitrifying bacteria, it may take 4–
8 or more weeks for them to colonize the biological filter and for water quality
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to stabilize. Bacterial colonization occurs naturally; although suspensions of
concentrated bacteria are available commercially and may be added to the
water to stimulate and faster colonization. Alleman [1] reports at least six con-
dition under which an elevate nitrite concentration can be observed in a nitri-
fication system, including reduced temperature, limited amount of O2, elevated
pH, high free ammonia concentration, decomposing matter, and acute process
loadings.

We note that, when the availability of dissolved oxygen becomes insufficient,
the anaerobic bacteria (Pseudomonas family) begin to use nitrate as an oxidi-
zing agent [5]. This is an extreme behavior and will not be considered in this
study. Moreover, for the sake of simplicity, in our model we assume that the
action of the plants with respect to the nitrogen cycle is minimal. This hypoth-
esis is verified if we have a small population of plants or else if our plants are at
lengthy grow. In those cases we are allowed not to take into account the carbon
cycle. This is in part also justified by the consideration that the effect of that
cycle is to stabilize the pH value within the aquarium. Indeed, the main source
of carbon to the aquarium is by far given by the unheated food given to the
fishes [6] and this can be taken under control for a small aquarium. On the
other hand, the carbon cycle is fundamental in the case of a study concerning
the plants life.

Based on the bio-chemical conditions discussed so far, in the next sec-
tion we define a simple, space independent, aquarium model. This model is
a basic step toward a more complex advection–diffusion–reaction 3D one:
it defines the reaction part of the more complex partial differential equations
model described in the last section. In Section 4, we report some test cases
used to validate the proposed space independent model. The presented
numerical solutions were obtained by the second order Heun method
coupled with a step selection procedure (see [7]), which are briefly described
in Section 3.
2. The mathematical model

There is a simple chemical reaction between ammonium hydroxide (NH3)
and ammonia (NH4) in water:

NH3 þH2O $ NHþ
4 þOH�

where the ± superscripts stand for a positive or negative ion, respectively. The
M symbol means that, at any time, there is an equilibrium between the two
components. Moreover, the percentage of the dangerous ammonium hydrox-
ide is minimal and grows with temperature and alkalinity of the water (see
[4]). So that, we can apply the point of view of taking into account only the
amount of the total ammonia.
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It is now important to consider the nitrogen cycle, that is involved within
any aquarium, described by the following chemical reactions:

2NHþ
4 þ 3O2 ! 2NO�

2 þ 2H2Oþ 4Hþ

2NO�
2 þO2 ! 2NO�

3

where we recall that NO2 and NO3 are nitrite and nitrate, respectively. So that
a simple mathematical model that takes into account the above cycle can be
formulated as follows:

dc1
dt

¼ p1ð1� q1c1Þ � l1c
2
1c

3
2;

dc2
dt

¼ p2ð1� q2c2Þ � l1c
2
1c

3
2 � l2

ffiffiffiffi

c2
p

c3;

dc3
dt

¼ l1c
2
1c

3
2 � l2

ffiffiffiffi

c2
p

c3 � p3c3;

dc4
dt

¼ l2

ffiffiffiffi

c2
p

c3 � p4c4;

ð2:1Þ

where t is the time and cj for j = 1,2,3,4 are NH4, O2, NO2, and NO3 concen-
trations, respectively. Ammonia and oxygen, nitrite and nitrate are measured
in milligram per liter, the time scale is in seconds. The solubility of oxygen
in water is a decreasing function of temperature: from tabulated experimental
values we have 9.2 mg/l at 20 �C, 8.3 mg/l at 25 �C and 7.7 mg/l at 30 �C. Safe
vales of c1 (ammonia) should be below of 0.05 mg/l; a maximum value that can
be tolerated only for a small period is 0.25 mg/l. Safe values of c3 (NO2, nitrite)
are below 0.05 mg/l. At concentrations of 50–60 mg/l of nitrate some fishes be-
come to suffer, and 100 mg/l is dangerous indeed, then, c4 should belong within
the range 5–10 mg/l.

For the parameters involved within the model we have to take into ac-
count several factors. One important factor is the amount of water, measured
in liters, of the aquarium: a large aquarium is simpler to be controlled than a
smaller one. Other useful indicators to consider are the number of fishes and
the amount of food that is not heated by the fishes. It is common to quantify
the fishes population by their total length, but by a simple dimensional
analysis [3, pp. 22–27] we can prove that their weights represent better indi-
cators. Next, we must consider the efficiency of the filter available for the
treatments of the water and the evolution of the bacteria population. At
the start up of the system we have to expect a grow of the ammonia concen-
tration, followed by the growing of the bacteria; we note that the Nitrosomas

bacteria are able to colonize an aquarium faster than the Nitrobacter. All
these considerations were used in order to define the model parameters. So
that, p1(t), pk for k = 2,3,4, q1, q2, l1(t), and l2(t), take into account,
respectively:
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p1(t) the ammonia NH4 production,

p1ðtÞ ¼ c½arctanðsðtÞÞ � arctanðsð0ÞÞ�;

where c is a given constant, and

sðtÞ ¼ xmax � xmin

#
t þ xmin;

xmin, xmax are constants, and # is a reference time. This function is related to
the fish population and their by-products such as food not heated, etc.

p2 the oxygen O2 production within the aquarium;
p3 the nitrite consumption due to chemical additives;
p4 the nitrate consumption by algae and plants;
q1 a limiting coefficient for the ammonia grow, assumed here to be equal to

1/maxc1 where maxc1 is a top dangerous concentration;
q2 a limiting coefficient for the oxygen grow, equal to 1/maxc2 where

maxc2 = 8.5;
l1(t) the Nitrosomonas, Nitrosospira, etc., efficiency,

l1ðtÞ ¼ c1½arctanðs1ðtÞÞ � arctanðs1ðtminÞÞ�;
where c1 is constant,

s1ðtÞ ¼
ymax � ymin

#
t þ ymin

ymin, and ymax are constants;
l2(t) the Nitrobacter, Nitrospira, etc. efficiency,

l2ðtÞ ¼ c2½arctanðs2ðtÞÞ � arctanðs2ðtminÞÞ�;

where c2 is constant,

s2ðtÞ ¼
zmax � zmin

#
t þ zmin;

zmin, and zmax are reference values.

The functions p1(t), l1(t), and l2(t), for xmin = 0, xmax = 24p, ymin = �6p,
ymax = 5p, zmin = �6p, zmax = 2p, c = 5 · 10�6, c1 = 2 · 10�8, c2 = 3 · 10�6

and # given by a reference time of 6 weeks (in seconds), are shown in the left
frame of Fig. 1. We note that, in this figure, the l1 parameter is magnified
by a factor of 100.
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Fig. 1. Aquarium model: two different models for p1(t), l1(t), and l2(t).
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A different model for those functions is reported on the right frame of the
same figure: in this case the functional form f(x) = a(1 � exp(bt)), was consid-
ered, with a and b constants. Some preliminary numerical experiments pointed
out that the first model for the considered parameters provides better results
then this last one. Henceforth, for the sake of brevity, only results obtained
by the first parameters model will be reported in the following.
3. Numerical method and adaptive strategy

Let us rewrite the governing system in vectorial form

dc

dt
¼ RðcÞ;

where c = (c1,c2,c3,c4)
T and R = (R1,R2,R3,R4)

T, with

R1 ¼ p1ð1� q1c1Þ � l1c
2
1c

3
2;

R2 ¼ p2ð1� q2c2Þ � l1c
2
1c

3
2 � l2

ffiffiffiffi

c2
p

c3;

R3 ¼ l1c
2
1c

3
2 � l2

ffiffiffiffi

c2
p

c3 � p3c3;

R4 ¼ l2

ffiffiffiffi

c2
p

c3 � p4c4.

For the numerical results reported in the next section we apply the explicit sec-
ond order Heun method:

cnþ1 ¼ cn þ Dt
2

RðcnÞ þ R cn þ DtRðcnÞð Þ½ �. ð3:1Þ

The choice of a second order method is motivated by the awareness that the
final 3D model can be solved by a combination of second order numerical
methods. Moreover, due to the huge computational complexity of this 3D
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model we are particularly interested to an adaptive method with very low
complexity.

We give here a brief description of the adaptive procedure used with the
above Heun method, for more details see [7]. Given a step size Dtn and an ini-
tial value cn at time tn, the method computes an approximation cn+1 at time
tn+1 = tn + Dtn. We define the following monitor function:

gn ¼ kcnþ1 � cnk1
kcnk1 þ �M

;

where �M > 0 is of the order of the machine precision, so that we can require
that the step size is modified as needed in order to keep gn between user defined
tolerance bounds.

In all the reported numerical tests we used the following conditions:

• step-size limitations: 10�4
6 Dtn 6 104;

• monitor function bounds: 10�4
6 gn 6 10�3;

• step-size increment: Dtn+1 = 2 Æ Dtn as soon as gn < 10�4;
• step-size reduction: we chose to repeat the same step when gn > 10�3 with a
reduced step size given by Dtn = Dtn/2.
4. Numerical tests

In this section, we report on five tests that were used to validate the pro-
posed aquarium model. In all tests, we considered a time period of 8 weeks, be-
cause this is the period usually used for monitoring the start up of any
aquarium. Moreover, typical values of the introduced parameters, might be
as follows:

c ¼ 5� 10�6; p2 ¼ 10�4; p3 ¼ 0; p4 ¼ 2� 10�7;

q1 ¼ 1=max c1; q2 ¼ 1=max c2;

c1 ¼ 2� 10�8; c2 ¼ 3� 10�6;

max c1 ¼ 5 mg=l; max c2 ¼ 8.5 mg=l.

ð4:1Þ

As a first test we try to reproduce the eight weeks start-up of a new aquar-
ium. This is the most critical period in any aquaculture experience. Fig. 2 re-
ports on results obtained by direct measurements for a typical nitrification
system.

It is easily seen that, initially, the dissolved oxygen in the aquarium is at its
maximum concentration; ammonia, nitrite and nitrate are absent. So that, we
have to consider the following initial conditions:



Fig. 2. Aquarium model: normal start-up measures.
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c1ð0Þ ¼ 0; c2ð0Þ ¼ 8.5; c3ð0Þ ¼ 0; c4ð0Þ ¼ 0. ð4:2Þ
The numerical results obtained for this test case are plotted in Fig. 3. The

proposed model provides a prediction on the necessity to use more than
5 weeks to allow the aquarium to arrive at a safe steady state bio-chemical con-
dition. In Fig. 4 we show the step-size selection, as well as the monitor function.
We can notice that, we get a discontinuity on monitor function g for any
change in the step-size value. Moreover, a fast variation of the step-size value
can be noticed at the beginning of the computation. This is normal for any
adaptive strategy when a first time step is not chosen carefully. We can remark
that the step-size selection criterion used here is able to modify the used step-
size quickly enough so that this particular aspect of the adaptive process can be
forgotten by the user.

Naturally, we are particularly interested to the extreme situations corre-
sponding, for instance, to a cycle without fishes and plants (p1 = 0), or to insuf-
ficient availability of oxygen (p2 �0), etc. To this end we performed two other
tests. We consider, first, the situation of an aquarium without a sufficient water
circulation and without plants. In this case, the oxygen concentration in the
water will become, soon or later, insufficient to allow the chemical reactions.
To see how our model can simulate this case we assume directly that
p2 = 10�6 and we start with the same initial conditions (4.2) of the first test.
The obtained numerical results are reported in Fig. 5. It is now evident that
in such a state of affairs the aquarium will not arrive at a safe steady state re-
gime for the fish population.
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As a thirdly test, we assume that the aquarium already arrived, for some
accident, at dangerous conditions for the fishes. To simulate this case, we
choose the initial conditions:

c1ð0Þ ¼ 0; c2ð0Þ ¼ 0.5; c3ð0Þ ¼ 5; c4ð0Þ ¼ 2; ð4:3Þ
that is, ammonia is absent but nitrite are at dangerous peak, oxygen is at a low
level and nitrate is within the norm. In this situation, a wise decision is to save
the fishes by taking them off of the aquarium and finding for them a suitable
recover (bearing them to friend�s aquaria or to some aquarium shop). So that,
we assume that the fishes are out of the aquarium. The obtained numerical re-
sults are reported in Fig. 6. It is evident from the reported results that in this
case the aquarium needs more then two months in order to return to a safe
state, hence it is certainly a good advise to proceed by a massive water change.
From Figs. 5 and 6, we can notice how the positivity of the oxygen concentra-
tion is verified.

We report now two final tests that have been performed to make a compar-
ison with batch experiments made by Anthonisen et al. [2]. These authors con-
sider a system where the production and consumption of nitrogen components
are absent, this implies that at any time we must have conservation of the total
amount of nitrogen (ammonia plus nitrite plus nitrate). Within the proposed
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aquarium model such a state of affairs can be imposed by setting p3 = p4 = 0
and p1(t) = 0 for all times. Our fourth test case is a noninhibited nitrification
process with initial conditions modified as follows:

c1ð0Þ ¼ 5; c2ð0Þ ¼ 8.5; c3ð0Þ ¼ 0; c4ð0Þ ¼ 0; ð4:4Þ
that is, ammonia and oxygen are at their maximum peeks and nitrite and ni-
trate are initially absent. The numerical results for this test case are reported
in Fig. 7.

The final test case is concerned with a inhibited nitrite oxidation and can be
simulated by setting c2 = 5 · 10�9. Fig. 8 shows the corresponding numerical
results. As expected, the inhibited nitrification process results in an upsurge
of the dangerous nitrite concentration. We have already reported in Section
1 that such a possibility is related with several circumstances, such as reduced
temperature, limited amount of O2, elevated pH, high free ammonia concentra-
tion, decomposing matter, and acute process loadings (see [1]).

We remark that, as it can be easily noted by looking at the two last figures,
the total amount of nitrogen components is, indeed, constant. Moreover, as far
as the ammonia, nitrite and nitrate species are concerned, we can verify that the
positivity requirement for the concentrations is fulfilled.
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5. Conclusions and remarks

In Section 1 we described, from a bio-chemical point of view, the nitrogen
cycle. Nitrogen dioxide and nitrate in aquaria are produced by bacteriological
nitrification of excreted ammonium nitrogen. The aquarium model, introduced
on the basis of this nitrogen cycle, is indeed a simplified version of a more com-
plex model. In fact, we have omitted to consider the dependence of the depen-
dent variables on the aquarium physical dimensions: that is, we have assumed
the simplifying hypothesis that at each point of the aquarium we have the same
bio-chemical conditions. This may be a reasonable hypothesis for a steady state
situations and in order to carry on the proposed preliminary study. However,
some cases of real interest cannot be investigated within the range of validity of
the above hypothesis. Consider, for instance, the case of a concentrated release
of pollutant material within the aquarium: a dead fish, some overdone amount
of food, or a decomposing plant. Moreover, as soon as we take into account
the action of a pump, a partial water change, or the use of additives we
have to take into account the action of a velocity field acting on the water
particles.

All the above reasoning leads us to consider a three-dimensional advection–
diffusion–reaction model governed by the following system of equations:

oc

ot
þr � ðvcÞ � r � ðDrcÞ ¼ RðcÞ; ð5:1Þ
where c = c(x, t) with c 2 R4 and x 2 X � R3 t and x denote time and space
variables, respectively; the water velocity field v and the diffusion coefficients
matrix D are, usually, supposed to be given. Here, the water velocity depends
on the pump action and diffusion matrix takes into account the property of the
chemical species to be diluted in water.

A simple numerical approach for the solution of (5.1) is the so-called oper-
ator splitting, due to Strang [10], uncoupling the time evolution of the advec-
tion–diffusion part of the system with respect to the reaction part. An
elementary justification for the popularity of the Strang approach is that the
left-hand side of (5.1) has a scalar nature, that is each component of the field
variables c is governed by a scalar partial differential equation, in contrast with
its right-hand side where all the components are coupled. Moreover, the time
evolution of each component of the left-hand side is determined by a partial
differential equation whereas the time evolution of the right-hand side has a
local (in space) dependence.

In this paper, we have used five test cases to verify that the proposed aquar-
ium model can be used to predict the typical operation regimes. The obtained
results have been favorable compared with the available literature experimental
data.
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