
DOI: 10.1478/AAPP.962A3

AAPP | Atti della Accademia Peloritana dei Pericolanti
Classe di Scienze Fisiche, Matematiche e Naturali

ISSN 1825-1242

Vol. 96, No. 2, A3 (2018)

TWO FINITE DIFFERENCE METHODS FOR A NONLINEAR BVP
ARISING IN PHYSICAL OCEANOGRAPHY

RICCARDO FAZIO a AND ALESSANDRA JANNELLI a∗

ABSTRACT. In this paper we define two finite difference methods for a nonlinear boundary
value problem on infinite interval. In particular, we report and compare the numerical results
for an ocean circulation model obtained by the free boundary approach and a treatment of
the problem on the original semi-infinite domain by introducing a quasi-uniform grid. In the
first case we apply finite difference formulae on a uniform grid and in the second case we use
non-standard finite differences on a quasi-uniform grid. We point out how both approaches
represent reliable ways to solve boundary value problems defined on semi-infinite intervals.
In fact, both approaches overcome the need to define a priori, or find by trials, a suitable
truncated boundary used by the classical numerical treatment of boundary value problems
defined on a semi-infinite interval. Finally, the reported numerical results allow to point out
how the finite difference method with a quasi-uniform grid is the least demanding approach
between the two and that the free boundary approach provides a more reliable formulation
than the classical truncated boundary one.

1. Introduction

Boundary value problems (BVPs) on infinite intervals arise in several branches of
science. The classical numerical treatment of these problems consists in replacing the
original problem by one defined on a finite interval, say [0,x∞], where x∞ is a truncated
boundary. The oldest and simplest approach is to replace the boundary conditions at infinity
by the same conditions at the value chosen as the truncated boundary. This approach was
used, for instance, by Howarth (1938) to get and tabulate the numerical solution of the
Blasius problem, see also Goldstein (1938, p. 136). However, in order to achieve an accurate
solution, a comparison of numerical results obtained for several values of the truncated
boundaries is necessary as suggested by Fox (1957, p. 92), or by Collatz (1960, pp.150-151).
Moreover, in some cases accurate solutions can be found only by using very large values
of the truncated boundary. This is, for instance, the case of the fourth branch of the von
Karman swirling flows, where values of x∞ up to 200 were used by Lentini and Keller
(1980b).

To overcome the mentioned difficulties of the classical approach described above, Lentini
and Keller (1980a) and de Hoog and Weiss (1980) suggested to apply asymptotic boundary
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A3-2 R. FAZIO AND A. JANNELLI

conditions (ABCs) at the truncated boundaries; see also the theoretical works of Markowich
(1982, 1983). Those ABCs have to be derived by a preliminary asymptotic analysis involving
the Jacobian matrix of the right-hand side of the governing differential equations evaluated
at infinity. The main idea of this ABCs approach is to project the solution into the manifold
of bounded solutions. By this approach more accurate numerical solutions can be found than
those obtained by the classical approach with the same values of the truncated boundaries,
because the imposed conditions are obtained from the asymptotic behavior of the solution.
However, we should note that for nonlinear problems highly nonlinear ABCs may result.
Moreover, it has been noticed by Ockendon that “Unfortunately the analysis is heavy and
relies on much previous work, . . . ” see Math. Rev. 84c:34201. On the other hand, starting
with the work by Beyn (1990a,b, 1991), the ABCs approach has been applied successfully
to “connecting orbits” problems. Connecting orbits are of interest in the study of dynamical
systems as well as of traveling wave solutions of partial differential equations of parabolic
type. However, a truncated boundary allowing for a satisfactory accuracy of the numerical
solution has to be determined by trial, and this seems to be the weakest point of the classical
approach. Hence, a priori definition of the truncated boundary was indicated by Lentini and
Keller (1980a) as an important area of research.

For the numerical solution of BVPs on unbounded domains it is also possible to consider
spectral methods that use mapped Jacobi, Laguerre and Hermite functions, see the book by
Boyd (2001), or the review by Shen and Wang (2009), or the paper by Liu and Zhu (2015)
for more details on this topic.

A free boundary formulation for the numerical solution of BVPs on infinite intervals was
proposed by Fazio (1996). In this approach the truncated boundary can be identified as an
unknown free boundary that has to be determined as part of the solution. As a consequence,
the free boundary approach overcomes the need for a priori definition of the truncated
boundary. This new approach has been applied to: the Blasius problem by Fazio (1992),
a two-dimensional stagnation point flow by Ariel (1993), the Falkner-Skan equation with
relevant boundary conditions by Fazio (1994), Zhang and Chen (2009) and Zhu et al. (2009),
a model describing the flow of an incompressible fluid over a slender parabola of revolution
by Fazio (1996), a model describing the deflection of a semi-infinite pile embedded in soft
soil by Fazio (2003), and the Thomas-Fermi equation by Zhu et al. (2012). An application
of the free boundary approach to a homoclinic orbit problem can be found in (Fazio 2002).
Moreover, a possible way to extend the free boundary formulation to problems governed by
parabolic partial differential equations is the main topic in (Fazio and Iacono 2010).

It might seem that in order to face numerically a BVP defined on an infinite interval,
we have to reformulate it in a way or another. However, recently, we have found that it is
also possible to apply directly to the given BVP a non-standard finite difference method
defined on a quasi-uniform grid. To this end it is necessary to derive special finite difference
formulae on the grid involving the given boundary conditions at infinity, but the last grid
point value (infinity) is not required; see Fazio and Jannelli (2014, 2017) and Fazio et al.
(2018) for details. The quasi-uniform grid can be defined by the coordinate transform
approach used, for ordinary and partial differential equations, for instance by Grosch and
Orszag (1977) and Koleva (2006), see also the books of Boyd (2001, pp. 325-326) or
Canuto et al. (2006, p. 96).
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In this paper, for an ocean circulation model, we report a comparison of numerical
results obtained by the free boundary approach with a finite difference method, and the ones
obtained by a non-standard finite difference method with a quasi-uniform grid.

2. The physical model

A steady-state wind-driven ocean circulation model can be introduced by considering
the barotropic vorticity equation

J(ψ,y+ γ∇
2
ψ) = κγ∇

4
ψ − cos

(
πy
2

)
, (1)

in a region defined by x ∈ [−1,1] and y ∈ [−1,1] with the following boundary conditions

ψ(±1,y) = 0 , ψ(x,±1) = 0 , (2)

and either
∂ψ

∂x
(±1,y) = 0 ,

∂ψ

∂y
(x,±1) = 0 , (3)

known as “rigid” or no-slippery boundary conditions, or

∂ 2ψ

∂x2 (±1,y) = 0 ,
∂ 2ψ

∂y2 (x,±1) = 0 , (4)

known as “slippery” or stress-free boundary conditions. Eq. (1) is written in a non-
dimensional form; ψ(x,y) is the stream function; a reference coordinate system is fixed
with the x axis directed to the east and the y axis directed to the north; J(a,b) is the Jacobian
of the functions a and b with respect to x and y, ∇2 is the Laplacian operator on the (x,y)
plane; the square [−1,1]× [−1,1] models a region of the subtropical gyre formation (Ierley
and Ruehr 1986). Here the Jacobian represents nonlinear advection and the Laplacian the
viscous drag. We assume that the curl of the wind stress in the region can be approximated
by −cos

(
πy
2

)
; γ and κ are non-dimensional parameters characterizing the widths of inertial

and viscous boundary layers, respectively. We use impermeability and no-slip conditions
(3) at the coasts and impermeability and slippery conditions (4) at the fluid boundaries. We
consider a particular solution to (1) of the form

ψ = π(y+1)u(x) . (5)

Relation (5) represents the first term in the expansion of a solution of (1) with respect to
y near boundaries of the region: at y =−1 and at y = 1. Substituting (5) into (1), using a
Taylor series expansion near y = −1 of the wind-stress term and assuming that a steady
boundary-layer type solution exists, we obtain the equation for the boundary layer at the
western coast, i.e., at x =−1,

κγ
d4u
dx4 = πγ

(
du
dx

d2u
dx2 −u

d3u
dx3

)
+

du
dx

, x ∈ [0,∞) . (6)

The parameters involved can be reduced to one if we define

b = π

(
γ

κ2

)1/3
,
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and introduce the new independent variable

ξ =
x

(κγ)1/3 .

In the above physical context, the limit of vanishing viscosity (small values of κ) is of
particular interest. Indeed, the parameter γ is also small, of the order of 10−3. Therefore,
in terms of the new independent variable ξ , far from the boundaries for asymptotically
matching the interior solution ψI , taken of the following form

ψI ≈ (1− x)cos
(

πy
2

)
,

we have to require that
u(x)→ 1 as x → ∞ .

The fourth order ordinary differential equation (6) can be integrated once, using zero
boundary conditions at infinity for the second and third derivative of u(ξ ), to give

d3u
dξ 3 = b

[(
du
dξ

)2

−u
d2u
dξ 2

]
+u−1 , ξ ∈ [0,∞) . (7)

The boundary conditions follow from (2)-(4). In particular, we can have no-slip (or rigid)
boundary data

u(0) =
du
dξ

(0) = 0, u(ξ )→ 1 as ξ → ∞ , (8)

or stress-free (or slippery) boundary conditions

u(0) =
d2u
dξ 2 (0) = 0, u(ξ )→ 1 as ξ → ∞ . (9)

Therefore, we get the two point BVP defined on an unbounded domain that has been
investigated by Ierley and Ruehr (1986), Mallier (1994), and Sheremet et al. (1997).

The parameter b in (7) can be used as a measure of the strength of the nonlinearity. In
fact, for b = 0 we get the simple linear model formulated by Munk (1950). Ierley and Ruehr
(1986) discovered an analytical approximation for the relation between the missing initial
condition and the parameter b. In particular, for rigid conditions they found the relation(

d2u
dξ 2 (0)

)2

≈ 2

1±
(

1+
4
3

b
)1/2 , (10)

where we are advised to take the positive root for b > 0, and for slippery conditions they
reported the approximation

du
dξ

(0)≈ 2

1±
(

1+
10
3

b
)1/2 . (11)

Following the results (10) and (11), Ierley and Ruehr discussed the existence and uniqueness
question for the problem (7)-(8) or (7)-(9). For the problem (7)-(8) we have a multiplicity of
solutions similar to the one of the Falkner-Skan model (Fazio 2013), and, in particular: for
0 < b there is exactly one solution, two solutions exits for bc < b < 0 where bc ≈−0.79130
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is a negative critical value, whereas for b ≤ bc no solutions exist at all. On the other hand,
for the problem (7)-(9) two solutions can be found for b greater than a negative value
bc ≈−0.29657 and no solutions exist for b ≤ bc. Of course, the approximations provided
by (10) and (11) can be used for comparison with the corresponding numerical results.

3. Numerical methods

In this section we present the numerical methods used in order to solve the ocean model
(7). As a first step we rewrite the ocean equation in (7) as a first order system

du
dξ

= f(ξ ,u) , ξ ∈ [0,∞) ,

(12)
g(u(0),u(∞)) = 0 ,

by setting

ui+1(ξ ) =
diu
dξ i (ξ ) , for i = 0,1,2 .

In this way the original BVP (7) specializes into

du1

dξ
= u2

du2

dξ
= u3 (13)

du3

dξ
= b(u2

2 −u1u3)+u1 −1 ,

that is,

u = (u1,u2,u3)
T

f(ξ ,u) =
(
u2,u3,b(u2

2 −u1u3)+u1 −1
)T

with

g(u(0),u(∞)) = (u1(0),u2(0),u1(∞)−1)T

or

g(u(0),u(∞)) = (u1(0),u3(0),u1(∞)−1)T

in (12). In the following, in order to set a specific test problem, we consider the ocean model
with b = 2.

3.1. The free boundary formulation and a relaxation method. In order to introduce a
free boundary formulation for our problem, we replace the far boundary condition by two
boundary conditions at the free boundary ξε

u(ξε) = 1 ,
du
dx

(ξε) = ε , (14)
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where ξε can be considered as a truncated boundary. Then we rewrite the resulting free
BVP in standard form (Ascher and Russell 1981), defining u4 = ξε and using the new
independent variable

z =
ξ

u4
. (15)

In general, we end up with a BVP belonging to the general class:

dU
dz

= F(z,U) , z ∈ [0,1] ,
(16)

G(U(0),U(1)) = 0 ,

where

U(z)≡ (u(z),u4)
T ,

F(z,U)≡ (u4f(u4z,u),0)T , (17)

G(U(0),U(1))≡ (g(u(0),u(1)),h(u(1)))T ,

where, in our case, h(u(1)) = u2(1)− ε . In order to simplify notation in (16), (17) and in
the following, we omitted the dependence of u and U on ε .

In order to solve the resulting problem we apply a relaxation method. Let us introduce
a mesh of points z0 = 0, z j = j∆z, for j = 1,2, . . . ,J, of uniform spacing ∆z and naturally
zJ = 1. We denote by the 4−dimensional vector V j the numerical approximation to the
solution U(z j) of (16) at the points of the mesh, that is for j = 0,1, . . . ,J . Keller’s box
scheme for (16) can be written as follows:

V j −V j−1 −∆zF
(

z j−1/2,
V j +V j−1

2

)
= 0 , for j = 1,2, . . . ,J

(18)
G(V0,VJ) = 0 ,

where z j−1/2 = (z j + z j−1)/2. It is evident that (18) is a nonlinear system with respect to
the unknown 4(J +1)−dimensional vector V = (V0,V1, . . . ,VJ)

T . Following Keller, the
classical Newton’s method, along with a suitable termination criterion, is applied to solve
(18).

Let us recall now the main properties of the box scheme proved by Keller in the main
theorem in (Keller 1974). Under the assumption that U(z) and F(z,U) are sufficiently
smooth, each isolated solution of (16) is approximated by a difference solution of (18)
which can be computed by Newton’s method, provided that a sufficiently fine mesh and
an accurate initial guess for the Newton’s method are used. As far as the accuracy issue is
concerned, the truncation error has an asymptotic expansion in powers of (∆z)2.

For the Newton’s method the simple termination criterion

1
4(J+1)

4

∑
ℓ=1

J

∑
j=0

|∆Vjℓ| ≤ TOL , (19)

where ∆Vjℓ, j = 0,1, . . . ,J and ℓ= 1,2,3,4, is the difference between two successive iterate
components and TOL is a fixed tolerance. The key point for the numerical solution of
the nonlinear system is that Newton’s method converges only locally. Therefore, some
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preliminary numerical experiments may be helpful and worth of consideration. However,
for the results reported, the initial guess to start the iterations is as follows

u1(z) = 1 , u2(z) = 0.1 , u3(z) = 0.1 , u4(z) = 1 (20)

for the BVP (7) with no-slip conditions (8) and with slippery conditions (9),

u1(z) =−1 , u2(z) =−0.5 , u3(z) = 1 , u4(z) = 2 (21)

for the BVP (7) with slippery conditions (9). In Tables 1, 2 and 3 and in Figures 1, 2 and 3,
we report some of the numerical results, obtained with the free boundary approach, related
to different values of ε and obtained by setting J = 2000 and TOL = 1E−6. Here and in
the following 1E− k is the standard notation for 10−k in simple precision arithmetic.

TABLE 1. Free boundary formulation for the BVP (7)-(8) and initial
guess (20). The positive root of Eq. (10) gives d2u

dξ 2 (0) = 0.828336.

ε iter ξε

d2u
dξ 2 (0)

1E−2 6 6.485761 0.826184
1E−3 8 8.792991 0.826141
1E−4 9 11.098635 0.826141
1E−5 10 13.402219 0.826142

TABLE 2. Free boundary formulation for the BVP (7)-(9) and initial
guess (20). Equation (11) gives du

dξ
(0) = 0.530662.

ε iter ξε

du
dξ

(0)

1E−2 6 5.828307 0.528970
1E−3 7 8.132813 0.528922
1E−4 9 10.437875 0.528921
1E−5 10 12.741323 0.528921

We consider the free boundary formulation more effective than the simple truncated
boundary approach. In fact, under suitable hypothesis, it is possible to prove the convergence
of the free boundary solution to the solution of the original BVP. Fazio (1996) proves that
as ε goes to zero the solution of the free boundary formulation converges to the solution of
the original problem and the free boundary ξε goes to infinity. The obtained approximation
becomes the more accurate the more ε is near zero. Then, since we know that the free
boundary increases as ε goes to zero, we can consider ε as a continuation parameter. This
means that, in order to reduce the iterations number of the Newton’s method, the results
obtained for a value of ε can be used as the initial guess for the next value of ε . Adopting
this criterion, we start by setting as initial guesses given by (20) and (21) for ε = 1E −2
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FIGURE 1. Numerical solution of the BVP (7) with no-slip conditions
(8) by the free boundary approach and initial guess (20).
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FIGURE 2. Numerical solution of the BVP (7) with slippery conditions
(9) by the free boundary approach and initial guess (20).
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FIGURE 3. Numerical solution of the BVP (7) with slippery conditions
(9) by the free boundary approach and initial guess (21).
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TABLE 3. Free boundary formulation for the BVP (7)-(9) and initial
guess (21). Equation (11) gives du

dξ
(0) =−1.130662.

ε iter ξε

du
dξ

(0)

1E−2 9 9.540077 −1.093016
1E−3 10 11.842867 −1.093018
1E−4 11 14.147566 −1.093019
1E−5 13 16.450930 −1.093021

and by using the results as initial guesses for ε = 1E −3, proceeding in this way for the
next values of ε , the number of iterations of the relaxation method is reduced to 6,6,6,6 for
the results reported in Tables 1-2 and to 9,6,6,6 for those of Table 3.

3.2. Finite difference method on a quasi-uniform grid. Let us consider the smooth strict
monotone quasi-uniform map ξ = ξ (η), the so-called grid generating function,

ξ =−p · ln(1−η) , (22)

where η ∈ [0,1], ξ ∈ [0,∞], and p > 0 is a control parameter. We notice that more than half
of the intervals are in the domain with length approximately equal to p and ξJ−1 = p lnJ.
Moreover, the mesh in ξ is nonuniform with the most rapid variation occurring with p << ξ

and the map gives slightly better resolution near ξ = 0. The problem under consideration
can be discretized by introducing a uniform grid η j of J + 1 nodes on [0,1] with η0 = 0
and η j+1 = η j +h with h = 1/J, so that ξ j defines a quasi-uniform grid on [0,∞]. The last
interval in (22), namely [ξJ−1,ξJ ], is infinite but the point ξJ−1/2 is finite, because the non
integer nodes are defined by

ξ j+α = ξ

(
η =

j+α

J

)
, (23)

with j ∈ {0,1, . . . ,J−1} and 0 < α < 1. The map allow us to describe the infinite domain
by a finite number of intervals. The last node of such grid is placed on infinity so that right
boundary condition is taken into account correctly.

For the sake of simplicity we consider here the simple scalar case. The finite difference
formulae can be applied component-wise to a system of differential equations. We can
define the values of u(ξ ) on the middle-points of the grid

u j+1/2 ≈
ξ j+1 −ξ j+1/2

ξ j+1 −ξ j
u j +

ξ j+1/2 −ξ j

ξ j+1 −ξ j
u j+1 . (24)

As far as the first derivative is concerned we can apply the following approximation

du
dξ

⏐⏐⏐⏐
j+1/2

≈
u j+1 −u j

2
(
ξ j+3/4 −ξ j+1/4

) . (25)

These formulae use the value uJ = u∞, but not ξJ = ∞. Both finite difference approximations
(24) and (25) have order of accuracy O(J−2).
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A finite difference scheme on a quasi-uniform mesh for the class of BVPs (12) can be de-
fined by using the approximations given by (24) and (25). We denote by the 3−dimensional
vector U j the numerical approximation to the solution u(ξ j) of (12) at the points of the
mesh, that is for j = 0,1, . . . ,J. We can define a second order finite difference scheme for
(12) as

U j+1 −U j −a j+1/2f
(
ξ j+1/2,b j+1/2U j+1 + c j+1/2U j

)
= 0 ,

(26)
g(U0,UJ) = 0 ,

for j = 0,1, . . . ,J−1, where

a j+1/2 = 2
(
ξ j+3/4 −ξ j+1/4

)
,

b j+1/2 =
ξ j+1/2 −ξ j

ξ j+1 −ξ j
, (27)

c j+1/2 =
ξ j+1 −ξ j+1/2

ξ j+1 −ξ j
.

It is evident that (26) is a nonlinear system with respect to the unknown 3(J+1)-dimensional
vector U = (U0,U1, . . . ,UJ)

T . We notice that b j+1/2 ≈ c j+1/2 ≈ 1/2 for all j = 0,1, . . . ,J−
2, but when j = J −1, then bJ−1/2 = 0 and cJ−1/2 = 1. On the contrary, we choose to set
bJ−1/2 = bJ−3/2 and cJ−1/2 = cJ−3/2 in order to avoid a suddenly jump for the coefficients
of (26). As reported by Fazio and Jannelli (2014), this choice produces a much smaller error
in the numerical solution of the system at ξJ .

For the solution of (26) we can apply the classical Newton’s method along with the
simple termination criterion

1
3(J+1)

3

∑
ℓ=1

J

∑
j=0

|∆U jℓ| ≤ TOL , (28)

where ∆U jℓ, j = 0,1, . . . ,J and ℓ= 1,2,3, is the difference between two successive iterate
components and TOL is a fixed tolerance. The computed numerical results are obtained
by setting TOL = 1E− 6. Figures 4 and 5 show the numerical solution of ocean model
(7)-(8) and (7)-(9). From these figures we notice how the grid is denser close to the origin in
comparison with the side of the far boundary at infinity. As far as the BVP (7) with no-slip
boundary conditions (8) is concerned we found a missing value of d2u

dξ 2 (0) = 0.826180.
On the other hand, for the BVP (7) with slippery boundary conditions (9) we get

a missing value of du
dξ
(0) = 0.528927 when using the initial iterate given by (29) and

du
dξ
(0) = −1.093088 with the initial iterate provided by (30). The initial iterate for the

solutions of the BVP (7) with no-slip conditions (8) and with slippery conditions (9), shown
in figure 4 and in the top frame of figure 5, is the following

u1(ξ ) = 1 , u2(ξ ) = u3(ξ ) = 0.1 , (29)

the initial iterare for the solution of the BVP (7) with slippery conditions (9), shown in the
bottom frame of figure 5, is the following

u1(ξ ) =−ξ , u2(ξ ) =−0.5 , u3(ξ ) = 0.1 . (30)
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FIGURE 4. Numerical solution for the BVP (7)-(8) obtained with the
map (22) and p = 5 for J = 200.

4. Final remarks and conclusions

In this paper we described two different approaches for the numerical solution of a
simple wind driven circulation model arising in physical oceanography. Our final aim is
the comparison of numerical results. This is provided in Tables 4, 5 and 6, where we used
the abbreviations FBF (free boundary formulation) and QUG (quasi-uniform grid). For
the sake of simplicity we limited ourselves to compare the computed values of the missing
initial condition. We applied finite difference methods to both the free boundary approach
and the quasi-uniform grid treatment of the original BVP. For the sake of comparison,
all numerical methods used in this study are second order methods. To test the proposed
numerical methods, the simulations were performed by an Intel Core i5 processors under
Windows 10 using the programming language Fortran 77.

In the free boundary formulation, the problem involves a system of N = 4 coupled
first-order ordinary differential equations (16) and is replaced with a nonlinear system of
equations (18) with respect to the unknown 4(J+1)−dimensional vector. On the other side,
by using the quasi-uniform mesh, the problem involves a system of N = 3 coupled first-
order ordinary differential equations and is replaced with a nonlinear system of equations
(26) with respect to the unknown 3(J+1)−dimensional vector. Moreover, as root finding
solver, we applied the classical Newton’s method along with a termination criterion. In
both cases, the solution consists of values for N dependent functions given at each of the
J+1 mesh points, or N(J+1) variables in all, and is found by starting with an initial guess
and improving it, iteratively. The iterations improve the solution. Note that the Newton’s
method for the free boundary formulation required a higher iterations number than the
iteration number of QUG approach. Moreover, in order to improve the accuracy of the
solution obtained by the free boundary formulation, a larger grid point number respect to
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FIGURE 5. The two numerical solutions for the BVP (7)-(9) obtained
with the map (22) and p = 5 for J = 200. Top frame: initial iterate (29),
bottom frame: initial iterate (30).

QUG approach was necessary. It is evident that, the free boundary formulation requires a
higher computational cost than the QUG approach.

The reported numerical results allow to point out that the non-standard finite difference
method with a quasi-uniform grid is the least demanding of the two approaches and that the
free boundary approach provides a more reliable formulation than the classical truncated
boundary one. Let us remark here that a further advantage in using finite difference schemes
on uniform, or quasi-uniform, grids in calculations is the possibility to apply Richardson’s
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TABLE 4. Comparison of numerical results for the ocean model (7) with
no-slip boundary conditions (8). The positive root of equation (10) gives
d2u
dξ 2 (0) = 0.828336.

Method grid-points iter boundary
d2u
dξ 2 (0)

FBF 2000 10 ξε = 13.402219 0.826142

FBF 4000 10 ξε = 13.402251 0.826140

QUG 200 5 ξJ = ∞ 0.826180

QUG 400 5 ξJ = ∞ 0.826150

TABLE 5. Comparison of numerical results for the ocean model (7) with
slippery boundary conditions (9). Equation (11) gives du

dξ
(0) = 0.530662.

Method grid-points iter boundary
du
dξ

(0)

FBF 2000 10 ξε = 12.741323 0.528921

FBF 4000 10 ξε = 12.741353 0.528921

QUG 200 4 ξJ = ∞ 0.528927

QUG 400 4 ξJ = ∞ 0.528922

TABLE 6. Comparison of numerical results for the ocean model (7)
with slippery boundary conditions (9). Equation (11) gives du

dξ
(0) =

−1.130662.

Method grid-points iter boundary
du
dξ

(0)

FBF 2000 13 ξε = 16.450930 −1.093021

FBF 4000 13 ξε = 16.450951 −1.093016

QUG 200 10 ξJ = ∞ −1.093088

QUG 400 9 ξJ = ∞ −1.093033

extrapolation (Richardson and Gaunt 1927), in order to improve the numerical accuracy,
see for instance Fazio and Jannelli (2014, 2017) and Fazio et al. (2018) for details.
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