

WHICH MODEL FOR SUPERFLUID HELIUM?

Michele Sciacca^{1*}

¹Dipartimento di Ingegneria, Università di Palermo,

Viale delle Scienze, 90128 Palermo, Italy

*michele.sciacca@unipa.it

The aim of the talk is to show a deeper comparison between the two main existing models of superfluid helium: the two-fluid model, proposed by Landau in 1941 [1, 2], and the one-fluid extended model [3, 4], proposed by using Extended Thermodynamics.

In particular, we perform some numerical experiments of these models for a direct comparison with the experiments by Guo's group [5, 6] in heat transport in superfluid helium. The numerical experiments will regard the profiles of the so-called normal and superfluid components in 2D counterflow turbulence for the two-fluid model, and the heat flux and the main velocity for the one-fluid extended model.

We also discuss on a possible interpretation of quantized vortices in the one-fluid model.

Acknowledgements

The results are partially supported by the PNRR project ECS00000022 "SiciliAn Micro-nanOTecH Research And Innovation CEnter (SAMOTRACE)" and the PRIN project 2022TMW2PY 002 "Transport phonema in low dimensional structures: models, simulations and theoretical aspects".

References

- [1] L. Landau, *J. Phys. U.S.S.R.* **5**, 71 (194).
- [2] I. L. Bekarevich, I.M. Khalatnikov, *Sov. Phys. JETP* **13**, 643 (1961).
- [3] M.S. Mongiovì, D. Jou, M. Sciacca, *Phys. Rep.* **726**, 1 (2018).
- [4] L. Galantucci, M. Sciacca, *J. Non-Equilib. Thermodyn* **49**, 205 (2024).
- [5] W. Guo, S. B. Cahn, J. A. Nikkel, W. F. Vinen, and D. N. McKinsey, *Phys. Rev. Lett.* **105**, 045301 (2010).
- [6] A. Marakov, et al., *Phys. Rev. B* **91**, 094503 (2015).