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ABSTRACT

In recent years, two-dimensional (2D) materials have attracted considerable attention owing to their wide-ranging potential applications [?].
Among these, graphene has emerged as one of the most extensively investigated candidates, being regarded as a promising material for integration
into nanoelectronic and optoelectronic devices; in fact, this represent the ultimate miniaturization since the active area is only one atom tick. The
description of charge transport in graphene can be formulated at different levels of physical complexity [?]. At the quantum scale, the Wigner
equation provides an accurate theoretical framework; however, in many situations its semiclassical counterpart, the Boltzmann equation, is a very
good model. The substantial numerical challenges associated with solving either the Wigner or the semiclassical Boltzmann equation have motivated
the development of alternative macroscopic approaches, including hydrodynamic, energy-transport, and drift–diffusion models. These models are
particularly relevant in the context of designing next-generation electronic devices in which graphene may replace conventional semiconductors
such as silicon and gallium arsenide. Thermal phenomena in low-dimensional structures also play a critical role, necessitating the incorporation of
phonon transport through the Peierls–Boltzmann equation for each phonon branch. Furthermore, uncertainties in key material parameters—such as
the effective band gap and the magnitude of the applied electric field—introduce significant variability in the predicted charge transport properties
of graphene nanoribbons [?; ?]. These challenges give rise to novel mathematical problems directly linked to the distinctive physical features of
graphene. The principal aspects will be examined, and recent advances [?; ?; ?; ?; ?; ?; ?] will be presented in the broader perspective of future
developments, with particular emphasis on the design and optimization of graphene-based field-effect transistors and on the rigorous treatment of
uncertainty quantification in graphene nanoribbons [?].

REFERENCES

[1] F. Schwierz, Nat. Nanotechnol., 5, 487–496 (2010).
[2] V. D. Camiola, G. Mascali, V. Romano. Charge transport in low dimensional semiconductor structures. Springer, Switzerland, (2020)
[3] V. Romano, A. Majorana and M. Coco, Journal of Computational Physics, 302, 267–284 (2015).
[4] G. Nastasi, V. Dario Camiola, V. Romano, Commun. Comput. Phys., 31 (2), 449–94 (2022).
[5] G. Nastasi, V. Romano. Mathematical aspects and simulation of electron?electron scattering in graphene. Z. Angew. Math. Phys, 74, 28, 2023.
[6] G. Nastasi, V. D. Camiola, V. Romano. Direct Simulation of Charge Transport in Graphene Nanoribbons. Communications in Computational

Physics, 31(2), 449–494, 2022.
[7] G. Nastasi, V. Romano. An efficient GFET structure. IEEE Transaction on Electron Devices, 68(9), 4729, 2021.
[8] G. Nastasi, V. Romano. A full coupled drift-diffusion-Poisson simulation of a GFET. Commun. Nonlinear Sci. Numer. Simulat., 87, 105300,

2020.
[9] L. Luca, V. Romano. Quantum corrected hydrodynamic models for charge transport in graphene. Ann. of Phys., 406, 50–33, 2019.

[10] A. Majorana, G. Nastasi, V. Romano. Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method. Comm
in Comp. Phys., 26, 114–134, 2019.

[11] G. Mascali, V. Romano. Charge transport in graphene including thermal effects. SIAM J. Applied Math., 77(2), 593–613, 2017.
[12] A. Medaglia, G. Nastasi, V. Romano, M. Zanella, Commun. Comput. Phys., 37 (4), 1055–1084, (2025).


