

An Extended Continuum Theory for Granular Micromechanics: Influence of Microstructural Parameters

Pasquale Giovine,
DICEAM, Mediterranean University of Reggio Calabria, Italy

A micromechanical continuum model is presented for the description of dilatant granular materials with rotating grains considered as peculiar examples of a more general theory of continua with microstructure, a multifield theory that indicates a wide range of models in which some additional fields have to be introduced to describe the influence of material microstructures on the gross mechanical behavior of continuum bodies [1]. Thus, the kinetic energy, in addition to the usual translational one, is composed of three terms due to microstructural motion; in particular, it includes the rotation of the grains and the dilatational expansion and contraction of the individual (compressible) grains and of the grains relative to each other [2].

The balance and constitutive equations of the medium are obtained by considering it as a continuum with a partially constrained affine microstructure. Moreover, the balance of granular energy is demonstrated to be a direct consequence of the balance of micro-momentum, while the dilatational and the rotational microstresses are turned out to be of different physical nature. Finally, a kinetic energy theorem implies that, locally, the power of all inertial forces is the opposite of the time-rate of change of kinetic energy plus the divergence of a flux through the boundary.

A first application for the study of seismic waves propagating through a sediment-filled basin in the case of rigid granules was made in [3,4]: one of the advantages of the model, compared to purely propagative models, is the reproduction of a nonlinear effect experimentally observed for real seismic waves: the site amplification decreases as the amplitude of the incident wave increases.

The peculiar case of a suspension of rotating rigid granules highlighted the possibility for granular materials to support shear stresses through the generation of micro-rotational gradients [5].

A last numerical example [6] was used to model vertical granular flow and was tested starting from the Goodman and Cowin model [7].

[1] G. Capriz: Continua with Microstructure. Springer Tracts in Natural Philosophy, Springer-Verlag, New York, 35, (1989)

[2] P. Giovine: An Extended Continuum Theory for Granular Media. In: “Mathematical Models of Granular Matter”, G. Capriz, P. Giovine, P.M. Mariano (Eds.), Series: Lecture Notes in Mathematics, Vol. n.1937, Springer Verlag 167-192 (2008)

[3] P. Giovine, F. Oliveri: Dynamics and Wave Propagation in Dilatant Granular Materials. Meccanica, 30, 341-357 (1995)

[4] C. Godano, F. Oliveri: Nonlinear seismic waves: a model for site effects. Int. J. Non-linear Mech. 34, 457-468 (1999)

[5] P. Giovine: Extended granular micromechanics. In: F. Radjai, S. Nezamabadi, S. Luding, J.Y. Delenne, (eds) Powders and grains 2017 - 8th Int. Conf. on Micromechanics of Granular Media, EPJ Web of Conferences, France, 140, 11009 (2017)

[6] A. Amoddeo, P. Giovine: Micromechanical modelling of granular materials and FEM simulations. Meccanica, 54, 609-630 (2019)

[7] M.A. Goodman, S.C. Cowin: A Continuum Theory for Granular Materials. Arch. Rational Mech. An., 44, 249-266 (1972)