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In this paper, two reaction-diffusion models describing the interaction among susceptible people 
(ordinary citizens), infective people (drug users/dealers), and law enforcement personnel are 
analyzed. The models here considered are a generalization of the crimo-taxis model originally 
proposed by Epstein in 1997. The modifications allow us to describe various scenarios. We analyze 
the equilibrium points, together with their stability, of the homogeneous system. Moreover, 
according to the Turing approach to reaction–diffusion models, we investigate the instability 
driven processes and the emergence of patterns in the complete models.

1. Introduction

Urban crime is a very common problem in today’s society, and its prevention is one of the fundamental tasks of law enforcement 
activities [1,2]. The formation of hot-spots of crime suggests that the latter do not occur uniformly in space and time, but often 
are concentrated in relatively small places and are responsible for more than half of crime events such as drugs, robbery, theft. A 
mathematical model for such a phenomenon could start by dividing a given population in different subgroups, for instance law-

abiding citizens, offenders and policemen, interacting each other. Among the various approaches in the literature to describe how 
the density of species or groups of individuals is distributed in space at different times due to local interaction and diffusion, there are 
reaction-diffusion models [3,4], kinetic models [5,6], and even operatorial models based on the mathematical apparatus of quantum 
mechanics (see [7,8], and references therein, where several operatorial models in various contexts have been studied).

In particular, reaction-diffusion equations are widely used as models for spatial effects in ecology [9–11], biology and medicine 
[12], epidemiology [13,14] and social sciences [15,16]. Reaction-diffusion equations can be analyzed by means of analytical and 
numerical methods from the theory of partial differential equations and dynamical systems. Models for urban crime dynamics based 
on reaction-diffusion compartmental systems have been proposed and analyzed in the last years by many authors [1,2,17–22].

In this paper, focusing on models for describing social interactions between ordinary people, drug users/dealers and policemen, 
we start from a one–dimensional model proposed in 1997 by Epstein [23], named crimo–taxis. In this model, the population is divided 
in three subgroups, whose numbers and spatial distributions evolve over time. It is assumed that events unfold on a one-dimensional 
region representing a “street.”

Let us define 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), and 𝑤(𝑥, 𝑡) as the ordinary citizens, drug users/dealers and law enforcement personnel at street 
position 𝑥 at time 𝑡 (a more sophisticated model could involve a fourth subgroup of removed, i.e., arrested, but this situation will not 
be considered here). The structure of the model recalls that used in some epidemiological models, so that ordinary citizens can be 
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thought of as susceptible individuals, drug users/dealers as infected/infectious individuals, and law enforcement personnel as a tool 
to fight infection [24,25].

This model, dubbed crimo-taxis by its creator, predicts various kinds of dynamical outcomes, with potential implications for policy 
makers. Starting with this model, we introduce two variants suitable to admit asymptotically stable homogeneous equilibria that lose 
their stability because of self- and cross-diffusive terms leading to the emergence of stable spatial patterns. The main novelty with 
respect to the Epstein model, besides some minor modifications in the reaction terms, relies on the introduction of a new cross-

diffusive contribution describing the spread of law enforcement personnel towards the region where there is a high concentration of 
ordinary citizens, this circumstance occurring for instance on the occasion of social or political demonstrations.

The paper is organized as follows. Section 2 deals with the original Epstein model; after setting the governing equations, as 
well as briefly describing some features of the dynamical outcome [23] in a special situation, we investigate the stability of the 
homogeneous equilibrium configurations; no asymptotically stable equilibrium exists, and no diffusion driven instability can be 
found. In Section 3, we propose two variants of the Epstein model: both admit an asymptotically stable homogeneous coexistence 
equilibrium, so that there is the possibility to investigate the pattern formation due to Turing instability. Section 4 is devoted to 
analyzing Turing instability from the analytical point of view, whereas Section 5 presents the results of the numerical simulations 
and the rise of some patterns. Finally, Section 6 contains some concluding remarks.

2. A nonlinear reaction-diffusion model on a street

Let us consider a road (an alley) that we represent with the interval [0, 𝐿] ⊂ℝ, where some people are distributed. We divide the 
entire population into three classes: ordinary citizens (susceptible individuals), drug users/dealers (infected/infectious individuals) 
and law enforcement personnel (policemen); let 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) be their densities at the position 𝑥 and time 𝑡, respectively. 
In [23], a set of reaction-diffusion equations has been proposed,

𝜕𝑢

𝜕𝑡
= 𝑟𝑢− 𝛽𝑢𝑣+𝐷11

𝜕2𝑢

𝜕𝑥2
,

𝜕𝑣

𝜕𝑡
= 𝛽𝑢𝑣− 𝛾𝑣𝑤−𝐷21

𝜕2𝑢

𝜕𝑥2
+𝐷22

𝜕2𝑣

𝜕𝑥2
+𝐷23

𝜕2𝑤

𝜕𝑥2
,

𝜕𝑤

𝜕𝑡
= −𝑏𝑤+ 𝜉𝑢𝑣𝑤−𝐷32

𝜕2𝑣

𝜕𝑥2
+𝐷33

𝜕2𝑤

𝜕𝑥2
,

(1)

where all the parameters therein involved are assumed to be positive; in particular, 𝑟 is the susceptible reproduction rate, 𝛽 the 
rate of infection, 𝛾 the police arrest rate, 𝑏 the police natural decay rate, 𝜉 the police growth rate, and 𝐷𝑖𝑗 self- and cross-diffusion 
coefficients (𝑖 = 𝑗 and 𝑖 ≠ 𝑗, respectively).

As far as the reaction terms are concerned, ordinary citizens and drug users/dealers interact with a prey predator mechanism [26]; 
on the contrary, the interaction between drug users/dealers and law enforcement personnel is a little bit different: the term −𝛾𝑣𝑤
is standard, whereas the term 𝜉𝑢𝑣𝑤 describes the growth in the number of police forces in parallel with the increase of the level of 
social alarm, due to the spread of the drug problem. The terms 𝐷11

𝜕2𝑢
𝜕𝑥2

, 𝐷22
𝜕2𝑣
𝜕𝑥2

and 𝐷33
𝜕2𝑤
𝜕𝑥2

model the diffusion of the three classes 
of individuals, and the second and third equation include cross-diffusion terms:

• the terms −𝐷21
𝜕2𝑢
𝜕𝑥2

and 𝐷23
𝜕2𝑤
𝜕𝑥2

represent that drug users/dealers spread in the areas occupied by the susceptible individuals 
and far away from the areas occupied by the policemen, respectively;

• the term −𝐷32
𝜕2𝑣
𝜕𝑥2

accounts for the diffusion of the policemen towards the areas where there is a high concentration of drug 
users/dealers.

It is reasonable to assume 𝐷23 > 𝐷21, as done in [23], at least if drug users/dealers give less importance to convert a susceptible 
individual with respect to the risk of being arrested; nevertheless, in this paper we also exploit some cases where 𝐷23 < 𝐷21, to 
account for a sort of ruthlessness of drug users/dealers.

In [23], assuming the values 𝛽 = 0.005, 𝜇 = 0.5, 𝛾 = 0.03, 𝜉 = 0.0001, 𝑏 = 1.0, 𝐷11 = 0.03, 𝐷22 = 0.01, 𝐷33 = 0.02, 𝐷23 = 0.006, 
𝐷32 = 0.006 for the parameters, and assigning the initial spatial distribution of the three subgroups, some numerical simulations have 
been performed. More in detail, the street was divided into 12 blocks, and the initial distribution of the various classes was assumed 
as follows: ordinary citizens occupy the four central blocks (1000 in each block), in blocks 8-12 there are the drug users/dealers (100
in each block), and the policemen are in blocks 1-3 (25 in each block).

The results therein presented show that the drug users/dealers diffuse toward the central blocks, where there is a large con-

centration of ordinary people and few cops; they peddle with many susceptible individuals, so that the latter become part of the 
crime. Consequently, it is observed a decrease in the population density of the susceptible individuals and an increase in that of the 
infected in the central blocks. This phenomenon induces a police reaction, that spread from the barracks at the end of the road to the 
center, the heart of the problem. Thereafter, the evolution shows a situation where the policemen wither away, and the susceptible 
individuals can continue their undisturbed spread.

Let us analyze the equilibrium points of the homogeneous system (no space dependence). There are three equilibria, say

⋆

(
𝑏𝛽 𝑟 𝑏𝛽2

)

2

𝑃1 = (0,0,0), 𝑃2 = (0, 𝑣 ,0), 𝑃3 = 𝜉𝑟
,
𝛽
,
𝜉𝛾𝑟

, (2)
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where 𝑣⋆ > 0 cannot be determined from the equilibrium conditions.

Linearizing the system around each equilibrium and computing the eigenvalues of the Jacobian matrix 𝐽 of reaction terms 
evaluated on each equilibrium, the following results are easily deduced:

1. the equilibrium 𝑃1 is unstable since 𝐽 has the eigenvalues

𝜆1 = 𝑟, 𝜆2 = 0, 𝜆3 = −𝑏;

2. the equilibrium 𝑃2 is not asymptotically stable or unstable depending on the sign of 𝜇 − 𝛽𝑣⋆ since the eigenvalues of 𝐽 are

𝜆1 = 𝑟− 𝛽𝑣∗, 𝜆2 = 0, 𝜆3 = −𝑏;

3. the coexistence equilibrium 𝑃3 is not stable since 𝐽 possesses a positive real eigenvalue and two complex conjugate eigenvalues 
with negative real part, say

𝜆1 = 𝓁1 + 𝓁2

𝜆2 = −1
2
(𝓁1 + 𝓁2) +

√
3
2

(𝓁1 − 𝓁2)i

𝜆3 = −1
2
(𝓁1 + 𝓁2) +

√
3
2

(𝓁2 − 𝓁1)i,

where

𝓁1 =
3

√
𝑏2𝛽2

2𝜉
+
√
Δ𝐼𝐼𝐼 , 𝓁2 =

3

√
𝑏2𝛽2

2𝜉
−
√
Δ𝐼𝐼𝐼 ,

Δ𝐼𝐼𝐼 =
𝑏2𝛽4

4𝜉2

(
1
4
+ 𝑏𝛽2(𝑏+ 𝑟)3

27𝑟3𝜉

)
.

Due to the analysis above described, the homogeneous Epstein model does not possess asymptotically stable equilibria. This is 
the main reason for proposing in Section 3 two different variants of the model in order to have stable equilibria susceptible of losing 
their stability as a consequence of the diffusive terms; as a result, we will be able to obtain the emergence of some patterns.

3. Modified models

In this Section, we consider two variants of the Epstein model; we introduce a further cross–diffusion term and some logistic 
effects.

The first variant we propose is the following one:

𝜕𝑢

𝜕𝑡
= 𝑟𝑢

(
1 − 𝑢

𝜅1

)
− 𝛽𝑢𝑣+𝐷11

𝜕2𝑢

𝜕𝑥2
,

𝜕𝑣

𝜕𝑡
= 𝛽𝑢𝑣− 𝛾𝑣𝑤−𝐷21

𝜕2𝑢

𝜕𝑥2
+𝐷22

𝜕2𝑣

𝜕𝑥2
+𝐷23

𝜕2𝑤

𝜕𝑥2
,

𝜕𝑤

𝜕𝑡
= −𝑏𝑤+ 𝜉𝑢𝑣𝑤−𝐷31

𝜕2𝑢

𝜕𝑥2
−𝐷32

𝜕2𝑣

𝜕𝑥2
+𝐷33

𝜕2𝑤

𝜕𝑥2
,

(3)

where the constant parameters therein involved are all positive. The rationale of this model is that we assume a maximum number 
of ordinary people in the street (carrying capacity, 𝜅1), so that we have a more realistic logistic growth for them; moreover, we 
introduce a cross-diffusion term in the third equation, −𝐷31

𝜕2𝑢
𝜕𝑥2

, to account for the diffusion of the police towards the areas where 
there is a high concentration of ordinary citizens (for instance, this occurs when there are some events, like concerts or political 
demonstrations that may determine possible problems).

The second variant, still retaining the modifications above described, modifies the crimo-taxis term of the original model; in fact, 
we assume that the reaction term responsible for the growth of police tends to decrease as 𝑤 approaches 𝜅2; this means that there is 
a limit, 𝜅2, to the number of law enforcement personnel. Therefore, we are led to consider the equations

𝜕𝑢

𝜕𝑡
= 𝑟𝑢

(
1 − 𝑢

𝜅1

)
− 𝛽𝑢𝑣+𝐷11

𝜕2𝑢

𝜕𝑥2
,

𝜕𝑣

𝜕𝑡
= 𝛽𝑢𝑣− 𝛾𝑣𝑤−𝐷21

𝜕2𝑢

𝜕𝑥2
+𝐷22

𝜕2𝑣

𝜕𝑥2
+𝐷23

𝜕2𝑤

𝜕𝑥2
,

𝜕𝑤

𝜕𝑡
= −𝑏𝑤+ 𝜉𝑢𝑣

(
1 − 𝑤

𝜅2

)
−𝐷31

𝜕2𝑢

𝜕𝑥2
−𝐷32

𝜕2𝑣

𝜕𝑥2
+𝐷33

𝜕2𝑤

𝜕𝑥2
.

(4)
3

Both models will be studied in the domain [0, 𝐿] ×ℝ+, where 𝐿 is the length of the street.
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Before analyzing these two models, let us introduce dimensionless variables:

�̂� = 𝑡

𝑇
, 𝑥 = 𝑥

𝐿
, �̂� = 𝑢

𝜅1
, 𝑣 = 𝑣

𝜅1
, �̂� = 𝑤

𝜅1
; (5)

the spatial scale and the normalizations for the three subgroups is suggested by the problem; on the contrary, the time scale 𝑇 =
(𝛽𝜅1)−1 is a constraint that we impose in order to have in the dimensionless equations the coefficient of the reaction term between 
ordinary citizens and drug users/dealers equal to 1.

In order to simplify the notation let us drop the hats, whence, introducing the vector 𝐔 and the matrix , say

𝐔 =
⎛⎜⎜⎝
𝑢

𝑣

𝑤

⎞⎟⎟⎠ ,  =
⎛⎜⎜⎝

𝑑11 0 0
−𝑑21 𝑑22 𝑑23
−𝑑31 −𝑑32 𝑑33

⎞⎟⎟⎠ , (6)

we may write both dimensionless models in compact form as

𝜕𝐔
𝜕𝑡

=𝐑(𝐔) +
𝜕2𝐔
𝜕𝑥2

, (7)

where

𝐑(𝐔) =
⎛⎜⎜⎝
𝑚1𝑢(1 − 𝑢) − 𝑢𝑣

𝑢𝑣−𝑚2𝑣𝑤
−𝑚3𝑤+𝑚4𝑢𝑣𝑤

⎞⎟⎟⎠ , (8)

for the first variant, and

𝐑(𝐔) =
⎛⎜⎜⎝

𝑚1𝑢(1 − 𝑢) − 𝑢𝑣

𝑢𝑣−𝑚2𝑣𝑤
−𝑚3𝑤+𝑚5𝑢𝑣(1 −𝑚6𝑤)

⎞⎟⎟⎠ , (9)

for the second variant; the parameters therein involved are

𝑚1 =
𝑟

𝛽𝜅1
, 𝑚2 =

𝛾

𝛽
, 𝑚3 =

𝑏

𝛽𝜅1
, 𝑚4 =

𝜉𝜅1
𝛽

,

𝑚5 =
𝜉

𝛽
, 𝑚6 =

𝜅1
𝜅2

, 𝑑𝑖𝑗 =
𝐷𝑖𝑗

𝛽𝜅1𝐿
2 .

(10)

3.1. Linear stability analysis of the homogeneous models

Let us consider the models where the spatial terms are neglected, say

𝑑𝐔
𝑑𝑡

=𝐑(𝐔). (11)

Both variants possess the physically admissible equilibria

𝐔𝟏 ≡ (0,0,0), 𝐔𝟐 ≡ (1,0,0), 𝐔𝟑 ≡ (0, 𝑣⋆,0),

where 𝑣⋆ is a positive value not determined by the equilibrium conditions. Linearizing system (11) around an equilibrium, we easily 
deduce the following results:

1. 𝐔1 is not stable since the Jacobian matrix of 𝐑(𝐔) evaluated on 𝐔1 has the eigenvalues

𝜆1 = 0, 𝜆2 =𝑚1, 𝜆3 = −𝑚3;

2. 𝐔𝟐 is not stable since the Jacobian matrix of 𝐑(𝐔) evaluated on 𝐔2 has the eigenvalues

𝜆1 = 1, 𝜆2 = −𝑚1, 𝜆3 = −𝑚3;

3. 𝐔𝟑 is not asymptotically stable or not stable (according to the sign of 𝑚1 − 𝑣⋆) since the eigenvalues of the Jacobian matrix of 
𝐑(𝐔) evaluated on 𝐔3 are

𝜆1 = 0, 𝜆2 =𝑚1 − 𝑣⋆, 𝜆3 = −𝑚3.

Moreover, the first model admits the coexistence equilibria

𝐔± ≡

(
𝑢±,𝑚1(1 − 𝑢±),

𝑢±
𝑚2

)
,

4

where
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𝑢± = 1
2

⎛⎜⎜⎝1 ±
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠ ,
provided that the parameters 𝑚1, 𝑚3 and 𝑚4 satisfy the constraint

𝑚1𝑚4 > 4𝑚3, (12)

that collapse in the same equilibrium

�̃� ≡

(
1
2
,
𝑚1
2

,
1

2𝑚2

)
when 𝑚1𝑚4 − 4𝑚3 = 0. The constraint (12) on the dimensionless parameters, expressed in terms of the original parameters, reads

𝑏 <
𝜅1𝑟𝜉

4𝛽
.

As far as the linear stability analysis is concerned, using Hurwitz criterion, we have that

1. 𝐔+ is asymptotically stable because all the eigenvalues of the Jacobian matrix of 𝐑(𝐔) evaluated on 𝐔+ have negative real parts;

2. 𝐔− is not stable because there is at least one eigenvalue of the Jacobian matrix of 𝐑(𝐔) evaluated on 𝐔− with positive real part;

3. if 𝑚1𝑚4 − 4𝑚3 = 0, the equilibrium �̃� is stable, but not asymptotically stable since the eigenvalues of the Jacobian matrix are:

𝜆1 = 0, 𝜆2,3 =
−𝑚1𝑚2 ±

√
𝑚1𝑚

2
2(𝑚1 − 2𝑚4 − 4)

4𝑚2
.

As far as the second variant is concerned, we have the following equilibrium solution:

𝐔 ≡

(
𝑢⋆,

𝑚3
𝑚5(𝑚2 −𝑚6𝑢

⋆)
,
𝑢⋆

𝑚2

)
with

𝑢⋆ = 1
2𝑚6

⎛⎜⎜⎝𝑚2 +𝑚6 −

√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

⎞⎟⎟⎠ .
The coexistence equilibrium 𝐔 exists if

𝑚1𝑚2𝑚5 −𝑚3 > 0, (13)

that, in terms of the original parameters becomes

𝑏 <
𝜅1𝑟𝛾𝜉

𝛽2
.

Furthermore, using Hurwitz criterion, 𝐔 is asymptotically stable.

4. Diffusion-driven instability

The effect of self- and cross-diffusive terms in a reaction-diffusion system may imply the loss of stability of an equilibrium point 
and lead to the emergence of special patterns. This is a well known phenomenon described for the first time in 1952 by Alan Turing 
in a pioneering paper [27], and investigated in several contexts by many authors [28–35].

Let us start the analysis by considering the general system (7); we briefly sketch the required steps of computation, then we 
specialize the results to the two models.

Denoting with 𝐔⋆ ≡ (𝑢⋆, 𝑣⋆, 𝑤⋆) an asymptotic stable equilibrium of the system (7) without spatial terms, and taking 𝐔0 ≡
(𝑢0, 𝑣0, 𝑤0) constant, let us consider the following perturbation:

𝐔 =𝐔⋆ +𝐔0 exp (𝜆𝑡+ i𝑘𝑥). (14)

By substituting relation (14), and linearizing the system (7), we get(
𝜆 −

(
∇𝐔𝐑(𝐔)||𝐔=𝐔⋆ −𝑘2

))
𝐔0 = 𝟎. (15)

This is a linear homogeneous system for 𝐔0 possessing non zero solutions provided that

det
(
𝜆𝑘 −

(
∇𝐔𝐑(𝐔)||𝐔=𝐔⋆ −𝑘2

))
= 0,
5

and loss of stability occurs if at least one of the eigenvalues of the matrix
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 = ∇𝐔𝐑(𝐔)||𝐔=𝐔⋆ −𝑘2 (16)

has positive real part.

4.1. First variant

Let us consider the stable equilibrium 𝐔⋆ ≡𝐔+, and write the characteristic polynomial of matrix  given in (16),

−𝜆3 + 𝑎2(𝑘)𝜆2 + 𝑎1(𝑘)𝜆+ 𝑎0(𝑘),

where

𝑎2(𝑘) = −(𝑑11 + 𝑑22 + 𝑑33)𝑘2 −
𝑚1
2

⎛⎜⎜⎝1 +
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠ ,
𝑎1(𝑘) = −

(
𝑑11𝑑22 + 𝑑23𝑑32 + (𝑑11 + 𝑑22)𝑑33

)
𝑘4

−
⎛⎜⎜⎝
(
𝑑21
2

+
𝑚1
2
(𝑑22 + 𝑑33) +

𝑚4𝑑23
2𝑚2

)⎛⎜⎜⎝1 +
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠
+
𝑚1𝑚2𝑑32

2

⎛⎜⎜⎝1 −
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠+
𝑑23𝑚3
𝑚1𝑚2

⎞⎟⎟⎠𝑘2
−

𝑚3
2

⎛⎜⎜⎝
⎛⎜⎜⎝1 + 2

𝑚4
+

√
1 −

4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠
⎞⎟⎟⎠ ,

𝑎0(𝑘) = 𝑎01𝑘
6 + 𝑎02𝑘

4 + 𝑎03𝑘
2 + 𝑎04,

along with the positions

𝑎01 = −𝑑11(𝑑22𝑑33 + 𝑑23𝑑32),

𝑎02 =
𝑑23
2

⎛⎜⎜⎝1 +
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠𝑑31 +
𝑚3𝑑11𝑑23
𝑚1𝑚2

− 1
2
𝑑11𝑑32𝑚1𝑚2

⎛⎜⎜⎝1 −
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠
− 1

2

⎛⎜⎜⎝1 +
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠
(
𝑑21𝑑33 + (𝑑22𝑑33 + 𝑑23𝑑32)𝑚1 + 𝑑11𝑑23

𝑚4
𝑚2

)
,

𝑎03 =
𝑚2𝑚3
𝑚4

𝑑31 −
𝑚3
2

⎛⎜⎜⎝1 +
√

1 −
4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠𝑑11
− 1

2𝑚2

⎛⎜⎜⎝(𝑚1𝑚4 − 4𝑚3) + (𝑚1𝑚4 − 2𝑚3)

√
1 −

4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠𝑑23
−

𝑚1𝑚2𝑚3
𝑚4

𝑑32 −
𝑚3
𝑚4

𝑑33,

𝑎04 = −
𝑚1𝑚3
2

⎛⎜⎜⎝1 −
4𝑚3
𝑚1𝑚4

+

√
1 −

4𝑚3
𝑚1𝑚4

⎞⎟⎟⎠ .
It is easily recognized that the coefficients 𝑎2(𝑘) and 𝑎1(𝑘) are negative, the latter due to the constraint (12) ensuring the existence 

of the equilibrium point. Therefore, we may have Turing instability if 𝑎0(𝑘) is positive for some values of 𝑘.

Remark 1. It can be easily recognized that if 𝑑31 = 0 it is not possible to have Turing instability. Therefore, in the subsequent 
6

analysis, 𝑑31 will be taken as the control parameter.
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Since 𝑎0(𝑘) can be expressed as a polynomial of degree 3 in 𝑘2, we can proceed by substituting 𝜅 = 𝑘2, whereupon we can write

𝑎0(𝜅) = 𝑎01𝜅
3 + 𝑎02𝜅

2 + 𝑎03𝜅 + 𝑎04. (17)

Though this polynomial has to be considered for 𝜅 ≥ 0, let us study its trend in ℝ. It is 𝑎01 < 0 so that

lim
𝜅→−∞

𝑎0(𝜅) = +∞;

moreover, because 𝑎04 < 0, it is 𝑎0(0) < 0. Thus, there exists a value 𝜅1 < 0 such that 𝑎0(𝜅1) = 0. For the existence of the Turing 
instability we need that 𝑎0(𝜅) possesses also two distinct positive roots.

The roots of the polynomial (17) are real and distinct if the condition

1
27

(
𝑎03
𝑎01

− 1
3

(
𝑎02
𝑎01

)2
)3

+ 1
4

(
𝑎04
𝑎01

+ 2
27

(
𝑎02
𝑎01

)3
− 1

3
𝑎02𝑎03

𝑎201

)2

< 0 (18)

is satisfied.

Both 𝑎02 and 𝑎03 are linear in 𝑑31; let 𝑑⋆
31 and 𝑑⋆⋆

31 the (positive) values of 𝑑31 annihilating 𝑎02 and 𝑎03, respectively, and let

𝛿1 = min
(
𝑑⋆
31, 𝑑

⋆⋆
31

)
, 𝛿2 = max

(
𝑑⋆
31, 𝑑

⋆⋆
31

)
.

By Descartes’ rule we may have two positive roots of (17) in the following two cases:

𝐴1: 𝑎02𝑎03 < 0, whereupon 𝑑31 cannot lie outside the open interval ]𝛿1, 𝛿2[;
𝐴2: 𝑎02 > 0 and 𝑎03 > 0, so that it has to be 𝑑31 > 𝛿2.

Nevertheless, we have to take into account the constraint coming from (18) that poses an additional restriction to the variability of 
𝑑31; finally, the range for the parameter 𝑑31 where the diffusion driven instability arises can be determined. Once we choose the 
parameter 𝑑31 such that Turing instability may occur, the real positive roots of (17) determine the interval where the wave number 
𝑘 can be taken. In Section 5, we will consider some reasonable values for the parameters and study pattern formation.

4.2. Second variant

For the second model, let us consider the stable equilibrium 𝐔⋆ ≡ 𝐔, and write the characteristic polynomial of the matrix 
given in (16),

−𝜆3 + 𝑎2(𝑘)𝜆2 + 𝑎1(𝑘)𝜆+ 𝑎0(𝑘),

whose coefficients read

𝑎2(𝑘) = −2𝑘2(𝑑11 + 𝑑22 + 𝑑33) −
1
2
𝑚1(1 +𝑚2𝑚5)

−
1 −𝑚2𝑚5

2𝑚6

⎛⎜⎜⎝𝑚1𝑚2 −

√
𝑚1(𝑚5(𝑚2 −𝑚6)2 + 4𝑚3𝑚6)

𝑚5

⎞⎟⎟⎠ ,
𝑎1(𝑘) = −

𝑚1𝑚2(1 +𝑚1𝑚2𝑚5) −𝑚3𝑚6

2𝑚2
6

√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

+
𝑚1𝑚2

2𝑚2
6

(𝑚1𝑚2𝑚5(𝑚2 −𝑚6) +𝑚2 +𝑚6(2𝑚3 − 1))

−
𝑚3

2𝑚5𝑚6
(𝑚5(𝑚2 −𝑚6) − 2)

−
((

𝑑23
2𝑚2

+
𝑚2(𝑑32 +𝑚5(𝑑11 + 𝑑22)) − 𝑑21 −𝑚1(𝑑22 + 𝑑33)

2𝑚6

)
×

×

√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

+
𝑑21
2

+
𝑚1𝑚2(𝑑22 + 𝑑33 −𝑚2𝑑 − 32 −𝑚2𝑚5(𝑑11 + 𝑑22)) +𝑚2𝑑21

2𝑚6

+
(𝑚1𝑚5(𝑚2 −𝑚6) −𝑚3)𝑑23

2𝑚1𝑚2

)
𝑘2 − (𝑑11𝑑22 + 𝑑23𝑑32 + (𝑑11 + 𝑑22)𝑑33)𝑘4,

𝑎0(𝑘) = 𝑎01𝑘
6 + 𝑎02𝑘

4 + 𝑎03𝑘
2 + 𝑎04,
7

along with
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𝑎
(1)
0 = −𝑑11(𝑑22𝑑33 + 𝑑23𝑑32),

𝑎
(2)
0 =

𝑚2(𝑑21𝑑33 +𝑚1(𝑑22𝑑33 + 𝑑23𝑑32)) − 𝑑11(𝑚1𝑚
2
2(𝑚5𝑑22 + 𝑑32) +𝑚5𝑚6𝑑23)

2𝑚2𝑚6
×

×

√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

− 1
2𝑚6

(𝑚2 +𝑚6)(𝑚1(𝑑22𝑑33 + 𝑑23𝑑32) + 𝑑21𝑑33)

+
𝑑11(𝑚2

1𝑚
2
2(𝑚2 −𝑚6)𝑑32 + 2𝑚3𝑚6𝑑23 +𝑚1𝑚5(𝑚2 −𝑚6)(𝑚1𝑚

2
2𝑑22 −𝑚6𝑑23))

2𝑚1𝑚2𝑚6
,

𝑎
(3)
0 =

(
𝑚3
2𝑚6

𝑑11 −
𝑚1𝑚

2
2𝑚5

2𝑚2
6

(𝑑21 +𝑚1𝑑22) −
2𝑚3 +𝑚1𝑚5𝑚6

2𝑚2𝑚6
𝑑23

+
𝑚1𝑚2

2𝑚2
6

(𝑚2𝑑31 −𝑚1𝑚2𝑑32 − 𝑑33)

)√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

−
𝑚3(𝑚2 +𝑚6)

2𝑚6
𝑑11 −

𝑚2(2𝑚3𝑚6 +𝑚1𝑚2𝑚5(𝑚2 −𝑚6))
2𝑚2

6

𝑑21

+
𝑚1𝑚2(2𝑚3𝑚6 +𝑚1𝑚2𝑚5(𝑚2 −𝑚6))

2𝑚2
6

𝑑22

−
𝑚1𝑚5𝑚6(𝑚2 −𝑚6) − 2𝑚3(𝑚2 + 2𝑚6)

2𝑚2𝑚6
𝑑23

−
𝑚2(2𝑚3𝑚6 +𝑚1𝑚2𝑚5(𝑚2 −𝑚6))

2𝑚5𝑚
2
6

𝑑31

+
𝑚1𝑚2(𝑚1𝑚2𝑚5(𝑚2 −𝑚6) + 2𝑚3𝑚6)

2𝑚5𝑚
2
6

𝑑32

+
𝑚1𝑚2𝑚5(𝑚2 −𝑚6) + 2𝑚3𝑚6

2𝑚5𝑚
2
6

𝑑33,

𝑎
(4)
0 =

𝑚1((𝑚1𝑚
2
2𝑚5 +𝑚3𝑚6)(𝑚2 −𝑚6) + 2𝑚3𝑚6(𝑚2 +𝑚6))

2𝑚3
6

×

×

√
(𝑚2 −𝑚6)2 +

4𝑚3𝑚6
𝑚1𝑚5

−
(𝑚1𝑚5(𝑚2 −𝑚6)2 + 4𝑚3𝑚6)(𝑚1𝑚

2
2𝑚5 +𝑚3𝑚6)

2𝑚5𝑚
3
6

The coefficients 𝑎2(𝑘) and 𝑎1(𝑘) are always negative (with the constraint (13) ensuring the existence of the equilibrium point), so 
that Turing instability may arise if the coefficient 𝑎0 is positive for some values of 𝑘.

The same analysis done in the previous subsection applies to this case, the only difference being that we have to impose the 
following additional constraints:

𝑚2 >
𝑚6
2

, 𝑚1 ≥
4𝑚3

𝑚5(2𝑚2 −𝑚6)
;

moreover, taking 𝑑31 as the control parameter, we can characterize its range such that the diffusion driven instability arises. Once we 
choose the parameter 𝑑31 in such a way Turing instability may occur, the range where the wave number can be chosen is determined 
as well. In Section 5, we will consider some reasonable values for the parameters yielding the formation of some patterns.

5. Numerical results

In this Section, we present some numerical computations, and the solutions clearly exhibit the formation of well recognized 
patterns. Most of the values of the parameters are chosen close enough to those used in [23], except for the new control parameter 
𝑑31 that is essential for Turing instability. For both variants of (7) with (8) or (9), we take the initial condition

𝐔(𝑥,0) =𝐔∗ +𝐔𝟎 cos(𝑘𝑥), 𝑥 ∈ [0,1],

𝐔∗ being the asymptotically stable equilibrium of the homogeneous model and 𝐔𝟎 = (0.01, 0.01, 0.01)𝑇 ; moreover, Neumann bound-
8

ary conditions at 𝑥 = 0 and 𝑥 = 1 are used; we use Neumann boundary conditions because we assume that the three groups are 
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confined in a limited region and there is not diffusion neither towards nor from the outer world. Numerical integrations are per-

formed by using an implicit central finite difference scheme [36] with steps 𝛿𝑥 = 0.01 and 𝛿𝑡 = 0.01. We also considered smaller 
steps and the accuracy of the results has not been affected.

5.1. First variant

Here, we present the numerical solutions of the system (7) along with (8) in two different scenarios characterized by different 
values of some of the parameters and possessing qualitatively different equilibrium solutions.

In the first scenario, the equilibrium values for drug users/dealers and law enforcement personnel are very close, so that we can 
describe a situation where the street is mainly occupied by ordinary people. Moreover, we take the coefficient 𝑑23 larger than the 
coefficient 𝑑21; this means that criminals prefer to avoid arrest rather than convert ordinary citizens. More in detail, let us choose 
the set of parameters

𝑚1 = 1, 𝑚2 = 8, 𝑚3 = 0.2, 𝑚4 = 2,

𝑑11 = 0.055, 𝑑21 = 0.0018, 𝑑22 = 0.004,

𝑑23 = 0.011, 𝑑32 = 0.011, 𝑑33 = 0.036,

(19)

whereupon the stable homogeneous equilibrium is

𝐔⋆ ≡ (0.887298,0.112782,0.110912);

to ensure Turing instability it is required 𝑑31 > 0.0532081.

Figs. 1 and 2 show the contour plots of the solution in correspondence of the parameters (19) for two different values of 𝑑31
greater than the critical value. Each figure displays on the left the evolution in the time interval needed for the emergence of the 
pattern, whereas on the right the asymptotic solution after the transient evolution. For large values of time it can be observed the 
formation of strips. There is a sort of segregation of the three subgroups: ordinary citizens and law enforcement personnel are more 
abundant far from the center of the domain, whereas drug users/dealers remain concentrated (and isolated) in the central part of the 
domain.

In the second scenario, let us choose the set of parameters

𝑚1 = 1, 𝑚2 = 11, 𝑚3 = 0.25, 𝑚4 = 1.5,

𝑑11 = 0.055, 𝑑21 = 0.03, 𝑑22 = 0.004,

𝑑23 = 0.011, 𝑑32 = 0.011, 𝑑33 = 0.036,

(20)

whence the stable homogeneous equilibrium turns out to be

𝐔⋆ ≡ (0.788675,0.211325,0.0716977);

the constraint 𝑑31 > 0.0378693 guarantees the rise of diffusion driven instability. In this scenario, at the equilibrium, the value for 
drug users/dealers is about three times the value of law enforcement personnel. Because of this, to mimic the situation where drug 
users/dealers do not care about the risk of being arrested in trying to convert ordinary citizens, we take a value of 𝑑23 smaller than 
that of 𝑑21.

Figs. 3 and 4 show the contour plots of the solution in correspondence of the parameters (20) for two different values of 𝑑31
greater than the critical value. As done above, each figure displays on the left the evolution in the time interval needed for the 
emergence of the pattern, whereas on the right the asymptotic solution after the transient evolution. Also in this scenario, for large 
values of time we observe the formation of strips. Nevertheless, differently from the first scenario, for large values of time, ordinary 
citizens and law enforcement personnel concentrate in the left part of the street, whereas drug dealers are concentrated in the right 
part of the domain.

Fig. 5 displays the time evolution of averages and variances of the densities of the three subgroups all over the spatial domain in 
all the cases considered. It can be observed that, after the transient phase, as one expects, the variances stay constant in time, and 
this corresponds to the fact that the strips remain stationary even for a long time. In both scenarios, we notice that, increasing the 
value of 𝑑31 the duration of the transient phase is shortened.

5.2. Second variant

For the system (7), along with (9), we consider two different scenarios too. The first scenario uses the following set of parameters

𝑚1 = 1, 𝑚2 = 10, 𝑚3 = 0.05, 𝑚5 = 0.3, 𝑚6 = 9,

𝑑11 = 0.06, 𝑑21 = 0.001, 𝑑22 = 0.02,

𝑑23 = 0.012, 𝑑32 = 0.012, 𝑑33 = 0.04;

(21)
9

the stable homogeneous equilibrium is
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Fig. 1. Contour plots of the solution for 𝑡 ∈ [0,400] in (a)-(c)-(e) and for 𝑡 ∈ [400,3000] in (b)-(d)-(f) with the parameters given in (19); 𝑑31 = 0.075, 𝑘 = 2𝜋.

𝐔⋆ ≡ (0.908569,0.0914306,0.0908569),

and, in order to have Turing instability, it is required 𝑑31 > 0.0503979.

Figs. 6 and 7 show the contour plots of the solution according to the parameters in (21) for two different values of 𝑑31 greater than 
the critical value. Each figure exhibits on the left the evolution in the time interval needed for the emergence of the pattern, whereas 
on the right the stationary solution. Also in this case hot strips originate for large values of time. It is highlighted the formation of 
aggregations of the three subgroups on the sides of the domain. In particular, citizens and policemen are shifted on the left side of the 
domain while drug users/dealers concentrate on the right side. The formation of pattern takes longer with respect to what observed 
10

in the first variant.
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Fig. 2. Contour plots of the solution for 𝑡 ∈ [0,140] in (a)-(c)-(e) and for 𝑡 ∈ [140,3000] in (b)-(d)-(f) with the parameters given in (19); 𝑑31 = 0.08, 𝑘 = 2𝜋.

On the contrary, the second scenario uses the set of parameters

𝑚1 = 1, 𝑚2 = 10, 𝑚3 = 0.07, 𝑚5 = 0.2, 𝑚6 = 10,

𝑑11 = 0.06, 𝑑21 = 0.05, 𝑑22 = 0.02,

𝑑23 = 0.012, 𝑑32 = 0.012, 𝑑33 = 0.04;

(22)

the stable homogeneous equilibrium is

𝐔⋆ ≡ (0.687868,0.312132,0.0859835),
11

and, in order to have Turing instability, it is required 𝑑31 > 0.0595941.
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Fig. 3. Contour plots of the solution for 𝑡 ∈ [0,1400] in (a)-(c)-(e) and for 𝑡 ∈ [1400,3000] in (b)-(d)-(f) with the parameters given in (20) and 𝑑31 = 0.039, 𝑘 = 𝜋.

In this scenario, at the equilibrium, the value for drug users/dealers is about four times the value of law enforcement personnel. 
Therefore, by assigning a value of 𝑑23 less than 𝑑21, this allows the drug users/dealers to move fearless towards ordinary citizens.

Figs. 8 and 9 depict the contour plots of the solution in correspondence of the parameters (22) for two different values of 𝑑31
greater than the critical value. As in the previous cases, on the left it is represented the evolution of the solution up to the formation of 
the pattern, while on the right is shown the stationary state exhibiting the pattern with strips. Ordinary citizens and law enforcement 
personnel definitely concentrate on the same side (left), while drug users/dealers are more abundant on the opposite part (right) of 
the street.

Fig. 10 illustrates the time evolution of averages and variances of the densities of the three subgroups all over the spatial domain 
in all the cases considered. As seen in the first variant, once the transient is over, the variance remains constant in time, thence 
the strips are stationary. Finally, the time required for the formation of Turing patterns decreases as the diffusion coefficient 𝑑31
12

increases.
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Fig. 4. Contour plots of the solution for 𝑡 ∈ [0,100] in (a)-(c)-(e) and for 𝑡 ∈ [100,3000] in (b)-(d)-(f) with the parameters given in (20) and 𝑑31 = 0.043, 𝑘 = 𝜋.

6. Conclusions

The pattern formation in reaction-diffusion systems is discussed in areas such as ecology and social science.

In this paper, we implemented and investigated two variants of a model originally proposed by Epstein, named crimo-taxis. The 
models consist of three coupled reaction-diffusion equations involving self- and cross-diffusion coefficients. The modifications to the 
Epstein model consist in adding a logistic effect in the susceptible population and a cross-diffusion coefficient in order to describe 
a sort of citizens’ protection made by the policemen. The second variant modifies also the original term accounting for the growth in 
the number of police forces in parallel with the increase of the level of social alarm.

Both models here studied admit asymptotically stable homogeneous coexistence equilibria, susceptible of losing their stability 
due to the self- and cross-diffusive terms. We analytically prove that the models may experience Turing instability depending on the 
13

value of a control parameter. The numerical simulations show the emergence of some characteristic patterns that remain stationary 
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Fig. 5. Plots of the averages (left) and variances (right) of the densities; subfigures (a)-(d) refer to the first scenario with 𝑑31 = 0.075 ((a), (b)), 𝑑31 = 0.08 ((c), (d)); 
subfigures (e)-(h) refer to the second scenario with 𝑑 = 0.039 ((e), (f)), 𝑑 = 0.043 ((g), (h)).
14

31 31
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Fig. 6. Contour plots of the solution for 𝑡 ∈ [0,1000] in (a)-(c)-(e) and for 𝑡 ∈ [1000,3000] in (b)-(d)-(f) with the parameters given in (21) and 𝑑31 = 0.055, 𝑘 = 0.7𝜋.

over time. The stationary nonhomogeneous solutions show that the models definitely allow for a distribution of the three subgroups 
in such a way law enforcement personnel is able to protect ordinary citizens, whereas drug users/dealers are isolated.

The two models proposed in this paper share a property not exhibited by the original Epstein’s crimo-taxis model [23], that is 
the existence of non trivial asymptotically stable homogeneous equilibria suitable to lose their stability because of self- and cross-

diffusive terms. Moreover, the inclusion in both models of a new cross-diffusive term allows to model situations, such as concerts 
or social or political demonstrations, where the diffusion of law enforcement personnel is driven also by higher concentrations of 
15

ordinary citizens.
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Fig. 7. Contour plots of the solution for 𝑡 ∈ [0,220] in (a)-(c)-(e) and for 𝑡 ∈ [220,3000] in (b)-(d)-(f) with the parameters given in (21) and 𝑑31 = 0.06, 𝑘 = 𝜋.

The patterns exhibited by the two variants heretofore analyzed are somewhat similar, although they exhibit a different distribution 
of the three subgroups. In the first variant, ordinary citizens and law enforcement personnel are more abundant far from the center of 
the domain, whereas drug users/dealers are primarily isolated in the central part of the street. On the contrary, as far as the second 
variant is concerned, the pattern exhibited after the transient phase show that ordinary citizens and law enforcement personnel 
definitely concentrate on the same side (left) of the street, while drug users/dealers are more abundant on the opposite part (right) 
of the street. The formation of both kinds of patterns is a consequence of the introduction in the model of the new cross-diffusive 
16

term in the third equation able to model the diffusion of the law enforcement personnel towards the region where ordinary citizens 
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Fig. 8. Contour plots of the solution for 𝑡 ∈ [0,220] in (a)-(c)-(e) and for 𝑡 ∈ [220,3000] in (b)-(d)-(f) with the parameters given in (22) and 𝑑31 = 0.07, 𝑘 = 𝜋.

move in order to avoid the interaction with drug users/dealers. The models investigated, possibly supported by real data in order to 
tune the values of the involved parameters, could be useful for policy makers in their decisional processes.

Although we do not have at the present rigorous results establishing the conditions for the positivity of the solutions, the param-

eters we used and the numerical solutions above presented describe physically meaningful situations.

The models here analyzed, as in [23], involve linear diffusive or cross diffusion terms. Nevertheless, possible extensions we plan 
to investigate in the near future could include nonlinear diffusion terms, that is to say analyze systems like( )
17

𝜕𝐔
𝜕𝑡

=𝐑(𝐔) + 𝜕

𝜕𝑥
(𝐔)𝜕𝐔

𝜕𝑥
, (23)
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Fig. 9. Contour plots of the solution for 𝑡 ∈ [0,120] in (a)-(c)-(e) and for 𝑡 ∈ [120,3000] in (b)-(d)-(f) with the parameters given in (22) and 𝑑31 = 0.08, 𝑘 = 𝜋.

where 𝐔 is the vector of unknown variables, and  is a matrix with entries depending on 𝐔. Moreover, it could be interesting an 
extension of the models to a two–dimensional spatial setting modeling a neighborhood of a town, or a further generalization including 
an additional subgroup (the arrested individuals) so that the action of the law enforcement personnel is not limited to protect ordinary 
citizens but also to actively crack down on illegal behavior. Last but not the least, we are implementing an operatorial model where 
the actors of the system are represented by annihilation, creation and number fermionic operators whose evolution is ruled by a 
time-independent Hermitian Hamiltonian  within the recently introduced framework of (, 𝜌)–induced dynamics [37].

Data availability
18

No data was used for the research described in the article.
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Fig. 10. Plots of the averages (left) and variances (right) of the densities; subfigures (a)-(d) refer to the first scenario with 𝑑31 = 0.06 ((a), (b)), 𝑑31 = 0.07 ((c), (d)); 
subfigures (e)-(h) refer to the second scenario with 𝑑 = 0.07 ((e), (f)), 𝑑 = 0.08 ((g), (h)).
19
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