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Abstract

We develop a central scheme for multi-fluid flows in Lagrangian coor-
dinates. The main contribution is the derivation of a special equation
of state to be imposed at the interface in order to avoid non-physical
oscillations. The proposed scheme is validated by solving several tests
concerning one-dimensional hyperbolic interface problems.

1 Introduction

We study a high-resolution central scheme for the system of conservation laws
describing two gases separated by an interface. We consider a piston problem
as described by Fazio and LeVeque [1]: a tube contains two different gases
separated by an interface at some point I(t) < L(t) where I(t) and L(t) are
interface and piston position. The governing equations are Euler equations
of gas dynamics,

dq 0

5 T 5y f@]=0, (1)
with
q = [p, pu, EI",
f(a) = [pu, pu® +p, (E +p)u]" | (2)
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and with the constitutive law for ideal gases

p= (ot~ 1) (B o) | ®)

where p, u, E/, and p denote density, velocity, total energy density per unit
volume, and pressure of the gas. The polytropic constant +(z,t) takes the
value 7, on 0 < x < I(t), and v, on I(t) < x < L(t). The motion of the
piston is driven by Newton’s equation

d’L A

R E(P(L(t),t) — Pout(t)) (4)
where A is the area of the piston, m is its mass and p,y(t) is the external
pressure.

Note that by setting A = 0 we resume, from the piston model above, the

classical tube problem with an interface and fixed boundaries.

2 Lagrangian formulation.
By introducing the Lagrangian coordinate £ given by

£ = /I p(z,t)dz
o(t)

where zy(t) denotes the Eulerian coordinate of the first fluid particle of the
domain, the Euler equations (1)-(2) can be transformed in Lagrangian form

Dq 0
— 4+ —|f =0
Bi g @] =0. )
which is also in conservation form with
q = Vu,&",
f(q) = [_uapa up]T ) (6)

here the time derivative is the Lagrangian derivative
D/Dt = 0/ot+ud/ox

the new field variables are defined by V(£,t) = p~', € = E/p, and the equa-
tion of state (3) becomes

p o= (len—1)(e-52) /v M)



Final Version — April 30, 2001 3

The inverse transformation of coordinate is
¢
x = xo(t) +/ V(z, t)dz
0

and z(t) satisfies the equation

d
2700 = u(€ =0,t) .

Hence, 0 < & < Emax will be our “computational domain” in which we have
a fixed uniform grid with & = (i — 1/2)A¢ for i = 1,2,..., N denoting the
center of i-th cell, and A = &max/N.

3 The Nessyahu and Tadmor central scheme.

The Nessyahu and Tadmor central scheme [5] has the form of a predictor-
corrector scheme

7}+1/2 A

_ n !
J = 4 — 51
1 1 n+1/2 n+1/2
Gl = @)+ i)+ gl — i) = A(F(afH) —£(af7))

where g denotes an approximation of the cell average of the field at time ¢,
N 1 §i+AE/2
- A_f §j—AL/2
and A = At/AE. The time step At must satisfy the stability condition

1
Amax p(A(qf)) <5,

n

where p(A) denotes the spectral radius of the Jacobian matrix

1= (5]

oqy,

This condition ensures that the generalized Riemann problems with piece-
wise smooth data at time %, do not interact during the time step At.

q;/A¢ and £} /AE are a first order approximation of the space derivatives
of the field and of the flux and can be computed in several ways. The simplest
choice is

q; = MM(qj11 —q;,9; —qj-1) ,
f], — MM(f]+1 - f], fj - fjfl) 3
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where MM (v, w) is the min-mod limiter

sgn(v) - min(|v|, |w|) if sgn(v) = sgn(w)

MM(v, w) = { 0 otherwise .

Several other choices of the limiters are possible, as discussed in [5].

4 Balancing the pressure at the interface.

t
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Figure 1: Evolution of the specific volume V near the interface cell for a
steady solution. The results are obtained by our scheme.

The development of this section starts from the observation that due to
the presence of the interface several quantities (such as density and energy)
may be discontinuous, but pressure and velocity have to be continuous across
the interface. This condition is enforced in our scheme.

At the initial time we assume that the interface is located at the boundary
between cell j,, and cell j,,+1. Because of the use of Lagrangian coordinates,
the interface will always separate cell 7, from cell 7, + 1 at even time steps,
and it will be in the middle of cell j, +1/2 at odd time steps (see Figure 1).
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Let us denote by subscript 1 and 2 the values of the field variables on the
two sides of the interface cell at odd time steps. The balance of the pressure
on the two sides of the interface, p; = ps, gives

1o - 2) =2 (6 - 509) (8)

We assume that on the two sides of the interface there are two different gases,
whose ratio 7 of densities is equal to the ratio of molecular masses:

Vo =nVi . (9)

Note that this condition is physically correct if the temperature is continuous
across the interface. The cell average of the specific volume V' and energy £
at the interface cell j,, +1/2 are

Vi+Vs 8_51+52

V= ,
2 2

(10)

Making use of above relations (8, 9, 10) we get the following formula for the
pressure p = p; = py in terms of the field variables at the interface

_ A+ —D0e—1) (o 1.,
p(Vi,£) = - <5 : )/v. (11)

Note that by setting n = 1 and 73 = 72 = 7 we recover from (11) the
classical equation of state for a polytropic gas. Once the interface quantities
are known, the values of the field variables on the two sides can be computed

2 p(V,u,&)Vi 1,
Vie 2 v g = AL me) -
1—1+77 ) 1 — 71_1 2“ )
2n p(Viu,E)Vo 1,
Vo = ——V E = — 11 24 q” .
2T 14 0 7 Yo — 1 2"

Figure 1 shows the evolution of the specific volume obtained by our
scheme on two time steps for a steady solution. A similar picture is ob-
tained for the evolution of the energy. Note how the scheme maintains static
solutions.

5 Numerical tests

In this section we report several numerical tests performed in order to validate
the Lagrangian scheme.
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5.1 Adiabatic approximation.

In this subsection we consider the adiabatic approximation for the piston
problem of Section 1. In the adiabatic approximation the pressures of the two
gases are equal and depend only on time. Furthermore, the entropies of both
gases are constants, equal to their initial values. The above conditions alone
are enough to describe the motion of the interface and of the piston by a single
ordinary differential equation of second order. The above hypotheses are
verified when the piston motion is slow compared with the sound speed and
this is the case for a sufficiently high piston mass. In the case of polytropic
gases, the ODE for the interface can be written explicitly
9 2
% (14 01 Y) + cro(o — 1)1 (%) _ %(@ml = (D) (12)

with initial conditions I(0) = I and dI/dt(0) = vy and

e = (L(0) — 1(0) (ﬁ)g

0= 71/,
¢z = polI(0)] .

po is the initial pressures on both sides of the interface. The piston position
can be obtained from the interface position via the relation

Mﬂz(M@—TWD<%%>+Jw-

We solve Eq. (12) with the following data vy = 0, po = 1, A/m = 0.01, pous(t) =
2,7 = 1.4, = 2.8, and initial conditions

dL
10)=03, LO)=1, —(0)=0,
and then we solve Eq. (5) with the same data and initial conditions
(p,u,p) = (p1,u1, p1) = (1.0,0.0,1.0) 0 <z <I(0)
PP (o2 p) = (10,00,10) - T(0) < w < L(0) .

The position of the interface is computed from the numerical solution by
solving the equation

dl
- () =wl(t),1) = uz(1(2),2) .
Figure 2 shows the good agreement between the adiabatic approximation

and the numerical results obtained by setting A¢ = 0.005. A Courant number
Amax; p(A(q})) = 0.45 has been used.
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Figure 2: Adiabatic approximation: interface and piston positions in the
x — t plane, dashed line: adiabatic solution, solid line: numerical solution
with 200 mesh-cells.

5.2 S. Karni test problems.

The five tests described here were proposed by S. Karni in order to test her
hybrid approach to multi-fluid flows [4]. Moreover, variations of those tests
were used by Jenny, Miiller and Thomann [3] and by Fedkiw et al. [2].

The numerical tests in this section have been performed with a Courant
number 0.4.

Test A is a classical tube problem with the interface initially at x = 0.5
and the following initial conditions

(pr,u,p1) = (1.0,0.0,1.0) 0<z<05
(p2,ug,p2) = (0.125,0.0,0.1) 0.6 <z <1.

with 7, = 1.4 and 7, = 1.2. Figure 3 illustrates the numerical results.
The physical setup for the other tests is to consider the interaction of a
weak (strong) shock at Mach number of 1.1952 (3.6055) moving from left to
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Figure 3: S. Karni’s Test A. Top left: density. Top right: velocity. Bottom:
pressure.

right in air with an air/helium (Tests B and D, Case 1) or air/R22 (Tests C
and D, Case 2) interface. Inflow (outflow) boundary conditions at the left
(right) boundary were applied to all the remaining tests.

The initial conditions for Test B are as follows

(pur,py) = (1.3333,0.3535,1.5) post-shock, air 0<2<0.3
PLUL P =Y (1.0,0.0,1.0) pre-shock, air 0.3 <z < 0.5
(p2,u9,p2) = (0.1379,0.0,1.0) pre-shock, helium 05 <z <1

with 73 = 1.4 and v, = 1.67. The initial conditions for Test C are given by
q: as in Test B and

(p2,u9, p2) = (3.1538,0.0, 1.0) pre-shock, R22 0.b<z <1

with 73 = 1.4 and v, = 1.249. The Figures 4 and 5 illustrate the numerical
results.

Within the Figures 3, 4 and 5 the solid lines and dashed-dotted lines
are obtained with 400 and 4000 mesh-cells, respectively, and a dashed line
indicates the position of the interface.

Tests D, Case 1 and Test D, Case 2 differ from Tests B and C, respectively,
because the post-shock state is (in both cases) given by

(p1,u1,p1) = (4.3333,3.2817,15.0) post-shock, air 0<z<0.3.

Figure 6 shows the numerical results obtained for the density with 400
mesh-cells for the Test D, Case 1 and Test D, Case 2. The spacing of grid
points is uniform in Lagrangian coordinates, but in the physical domain it is
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Figure 4: S. Karni’s Test B. Top left: density. Top right: velocity. Bottom:

pressure.
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Figure 5: S. Karni’s Test C. Top left: density. Top right: velocity. Bottom:
pressure.

determined by the density values. Note how, by setting a constant cell-width
AE, we get only 13 nodes on the right of the interface on the left frame of
Figure 6. By contrast the number of cells in the case of the right frame of
Figure 6 is much higher, and the discontinuities look sharper. Moreover,
the over-shoot (under-shoot) on the left of the interface on the left frame of
Figure 6 (right frame of the same Figure) is due to the following reason. The
temperature across the interface is not necessarily continuous, and therefore
assumption (9) with constant 7 is not appropriate. According to whether
the correct value of the volume ratio V5/V; (which is proportional to the
temperature ratio) is greater or smaller than 7, one observes an over-shoot
(Figure 6, left) or an under-shoot (Figure 6, right), the latter being much
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Figure 6: S. Karni’s Density for Test D. Left: Case 1. Right: Case 2. The
interface is marked by a dashed line.

less evident. A better condition is to impose that the interface is adiabatic,
i.e. that no heat flows through it (and therefore the entropy is locally flat).
The above possibility is presently under investigation.

Note that, in spite of the above mentioned difficulty and the lack of res-

olution on the low density regions, the scheme provides an accurate position
of the waves.
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