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In this paper, we consider the adaptive numerical solution of one-dimensional models of liquid dynamics in a horizontal
capillary. The bulk liquid is assumed to be initially at rest and is put into motion by capillarity: the smaller is the capillary
radius, the steeper becomes the initial transitory of the meniscus location derivative, and as a consequence, the numerical
solution to a prescribed accuracy becomes harder to achieve. Therefore, in order to solve a capillary problem effectively, it
would be advisable to apply an adaptive numerical method.

Here, we show how an extended scaling invariance that can be used to define a family of solutions from a computed
one. In the viscous case, the similarity transformation involves solutions of liquids with different density, surface tension,
viscosity, and capillary radii, whereas in the inviscid case, we can generate a family of solutions for the same liquid and
capillaries with different radii. With our study, we are able to prove that the monitor function, used in the adaptive
algorithm, is invariant with respect to the considered scaling group. It follows, from this particular results, that all the
solutions within the generated family verify the adaptive criteria used for the computed one. Moreover, all the solutions
have the same order of accuracy even if the maximum value of the step size varies under the action of the scaling group.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

The present study was motivated by the non-destructive control named "liquid penetrant testing" used in the production of airplane
parts and in many industrial applications, where the detection of open defects is of interest. Liquid penetrants are used to locate
surface-accessible defects in solid parts. The basic technique uses several stages. Among those stages, at least two involve capillary
action, namely: application of a penetrant liquid and use of a developer, usually some kind of porous material (like an absorbing
coating). These two stages can be modeled in the same way, but at a completely different space scale. The visible dimension of a
defect at the penetrant stage may be of the order of millimeters or microns; on the other hand, the porous material at the developer
stage should have pores of the order of nanometers or Ångstrom. The present study may be seen as a possible way to use the results
obtained within the penetrant stage to get results related to the developer stage.

One-dimensional models of liquid dynamics in a horizontal capillary have an interesting history. The first simple models were
introduced at the beginning of the last century by Bell and Cameron [1], Lucas [2], Washburn [3], and Rideal [4]. The main results
obtained at that time was the derivation of the celebrated Washburn solution, which is a valid asymptotic long time approximation
that can be derived by neglecting the inertial effects. Those inertial effects were taken into account in a more realistic model proposed
by Bosanquet [5]. The Szekely-Neumann-Chuang (SNC) model introduced by Szekely et al. [6] takes into account also the outside flow
effects, including within the inertial terms, an apparent mass parameter. Recently, Cavaccini et al. [7,8] pointed out that in order to solve
effectively a capillary problem, it would be advisable to apply an adaptive numerical method. For further information on this subject,
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we refer to the survey papers by Kornev and Neimark [9], Zhmud et al. [10], the recent book by de Gennet et al. [11], and the references
quoted therein.

In this paper, we extend the original approach developed recently by Fazio in [12], for the numerical solution of the van der Pol
model, to a class of problems. In particular, we use an extended scaling invariance for one-dimensional models of liquids dynamics in a
horizontal capillary. A classical similarity analysis would require the invariance of the model with respect to a group involving only the
dependent and independent variables, see for instance Bluman and Cole [13] or Dresner [14]. However, we are interested, here, to an
extension of the classical analysis, obtained by requiring the invariance of physical parameters, proposed first by Na [15], see also the
Chapters 7–9 of the book by Na [16], and the references quoted therein.

Here, we show how this extended invariance can be used to define a family of solutions from a computed one. In the viscous case,
the scaling transformation involves solutions of liquids with different density, surface tension, viscosity, and capillary radii, whereas in
the inviscid case, we can generate a family of solutions for capillaries with different radii but the same liquid. The reference solution
should be as accurate as possible; and, therefore, we suggest to use for it an adaptive numerical method. With our study, we are able
to prove that the used monitor function is invariant with respect to the considered scaling group. As a consequence, all the solutions
generated by the scaling invariance verify the adaptive criteria used for the computed one. Moreover, all the solutions have the same
order of accuracy even if the maximum value of the step size, that can be considered as a discretization parameter, varies under the
action of the scaling group.

2. Mathematical modeling

With reference to Figure 1, we consider a liquid freely flowing within a horizontal cylindrical capillary of radius R. At the left end of the
capillary, we have a reservoir filled with the penetrant liquid. The bulk liquid is assumed to be initially at rest and is put into motion by
capillarity: the smaller is the capillary radius, the steeper becomes the initial transitory of the meniscus location derivative, and as a con-
sequence, the numerical solution to a prescribed accuracy becomes harder to achieve, see Cavaccini et al. [7, 8]. The model governing
the dynamics of a liquid inside an open ended capillary is given by
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where ` is the moving liquid–gas interface coordinate, d`=dt can be interpreted as the average axial velocity U; �, � , # , and � are
liquid density, surface tension, contact angle, and viscosity, respectively, and cDO.1/ is the coefficient of apparent mass, introduced
by Szekely et al. [6] to take into account the flow effects outside the capillary. Here, and in the following, we use a coefficient of
apparent mass c D 7=6. For the mathematical derivation of the governing equation, as well as sample numerical computations,
we refer to Cavaccini et al. [7, 8]. Further numerical results were presented at the ICIAM congress held in Zurich, July 16–20, 2007,
see Fazio et al. [17].

For the derivation of the model, we have to assume a quasi-steady Poiseuille velocity profile, and, to simplify it, we take the dynamic
contact angle equal to the static one. The above one-dimensional model is a realistic one if the Bond, Capillary, and Weber numbers
are small, that is Bo D 4�gR2=� � 1, Ca D �U=� � 1, and We D 2�RU2=� � 1, where g is the acceleration due to gravity. Despite to
its simplicity, the considered model has been validated by experimental results reported in several papers by many authors.

3. Extended scaling invariance

A classical similarity analysis would require the invariance of the model (1) with respect to transformations involving only the
dependent and independent variables. However, we are interested here to an extension of the classical analysis, obtained by requiring
the invariance of physical parameters, proposed first by Na [15]. In particular, we are interested to consider the same model, but with
different values of the capillary radius R, density �, surface tension � , and viscosity parameter �.

Here, we derive the conditions for the invariance of the model (1) with respect to the following extended scaling group

t� D �ı t , `� D �` , R� D �R , �� D �˛1� , �� D �˛2� , �� D �˛3� , (2)

0 R z

Figure 1. Sketch of a horizontal capillary section.
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where � is the group parameter, and ˛1, ˛2, ˛3 and ı are group exponents to be determined. We note that the initial conditions are
invariant with respect to the action of (2). Moreover, the governing equation, under (2), becomes

�2ı�˛1�2��
d

dt�
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dt�

�
D �1�˛2 2

�� cos#
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therefore, its invariance is granted on condition that

2� 2 ıC ˛1 D ˛2 � 1D ˛3 � ı . (3)

These are two linear equations for four parameters. Henceforth, our model is left invariant by a scaling group depending on two
arbitrary group exponents.

Our interest, here, is to define by the similarity invariance, a family of solutions each one identified by particular values of the capillary
radius R, density �, surface tension � , and viscosity �, from an approximated numerical one. In this way, it can be possible to get an
approximation also for the derivatives of the field variable `. In fact, as a consequence of (2), we have

dn`�

dt�n
.t�/D �1�n ı dn`

dtn
.t/ , nD 1, 2, : : : . (4)

We have shown in Cavaccini et al. [7, 8] that, for a capillary problem, it would be advisable to apply an adaptive numerical method. In
that paper, we used for the adaptive procedure the following monitor function
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where�tk is the current time-step and
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where 0< 	� 1. So that we can require that the step size is modified as needed in order to keep this monitor function between chosen
tolerance bounds. More details on the adaptive strategy and the meaning of this type of monitor functions can be found in [18]. Here,
we provide further evidence for the usefulness of this kind of adaptive approach, and, to this end, we apply a similarity analysis. It is
straightforward to verify that the monitor function defined by (5) is invariant under (2), if and only if

	� D �1�ı	 . (7)

As a consequence, by setting

�min � �.tk/� �max ,

where �min and �max are prescribed tolerances, it follows that also

�min � �
�.t�k /� �max ,

where ��.t�k / is the monitor function rewritten in the starred variables. The monitor function used in this paper is invariant with respect
to (2)–(7). Therefore, all the solutions generated by the scaling group (2) from a computed one verify the same adaptive criteria.

Let us assume that the reference solution was computed in a stable way, so that a table of computed values is generated satisfying
the order conditions
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where�tmax is the maximum of the used time steps,
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and Cp is a positive constant related to the specific numerical method considered. It is a simple matter to verify that all the generated
solutions by the scaling group (2) are of the same order p, that is
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where �t�max D �ı�tmax is the maximum of the transformed time steps, 
�k and  �k are the function 
k and  k rewritten in the
starred variables.
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As shown by Shampine and Witt [19], the application of an adaptive method stabilizes the computation. Our advise is to use a suffi-
ciently small value for�tmax, so that, taking into account, the range of values for � used to produce the family of transformed solution,
it turn out that�t�max has a suitable value with respect to the time scale Œ0, t�max�. For the adaptive method used, we always define and
apply values of�tmin and�tmax for the allowed minimum and maximum of the step sizes.

4. Numerical results

In this section, we report on sample numerical results for viscous or inviscid capillary flows. We consider first the case of a class of
silicone oils (the so called polydimethylsiloxane [PDMS] series) according to the parameter values listed in Table I.

Here, we apply the scaling group (2) with group exponents

ı D 3=2 , ˛1 D ˛2 D�1 , ˛3 D�1=2 , (8)

that satisfy the conditions (3).

Table I. Parameters for the series of PDMS silicone oils. For the sake of simplicity, we assume that # D 0 in all cases.

Liquid � ŒKg/m3� � ŒmN/m� � ŒmPa � s�

PDMS5 918 19.7 5
PDMS10 935 20.1 10
PDMS20 950 20.3 20
PDMS50 960 20.8 50
PDMS500 971 21.5 500

PDMS, polydimethylsiloxane.
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Figure 2. Adaptive step-size results. Here, by setting R D 5 mm, we get: � D 10�2, � D 0.5 mPa � s, � D 9.18 Kg/m3, � D 0.197 mN/m. From top to bottom:

numerical solution, adaptive step-size selection�tk , and monitor function �.
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Our target is a capillary with R� D 0.05 mm for the liquid parameters marked by PDMS5:

�� D 918 Kg/m3 , �� D 19.7 mN/m , �� D 5 mPa � s , # D 0ı . (9)

The top frame of Figure 2 displays the numerical results obtained by setting a reference value RD 5 mm and computing all the other
non-starred parameters from (9) according to the scaling group (2)–(8). Therefore, we end up with parameters not listed in Table I, that is
to say that our reference computation might not correspond to a real penetrant liquid. This computation, using the adaptive procedure
with criteria specified later, required 1362 steps with 19 rejections for t 2 Œ0, 5�; the used limits for the step size were�tmin � 5 � 10�11

and�tmax D 10�1.
The Washburn asymptotic approximation

`.t/D

�
�R cos#

2�
t

�1=2

, (10)

shown in all figures as a solid line, is reported for comparison. This approximation is valid only for t >> t�, where t� D �R2=� is
a viscous time scale. We note from the middle and bottom frame of Figure 2 that the adaptive procedure concentrates most of the
computational effort within the initial transient.

In the top frame of Figure 3, we plot one solution obtained by applying the scaling invariance to the numerical solution shown in
Figure 2. The reader can compare the top frame of Figure 3 with its bottom frame, the bottom frame was obtained by plotting the
numerical results of a second computation with the parameters in (9). In this case, the computation, using the same adaptive criteria as
in the first one, required 1520 steps with 32 rejections with t 2 Œ0, 5 � 10�3�; the used limits for the step size were �tmin � 5.82 � 10�15

and�tmax D 10�4.
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Figure 3. Viscous case�D 5 mPa � s with RD 0.05 mm. Top frame: results found by invariance. Bottom frame: direct numerical results. Washburn solution and

`.t/ are magnified by a factor 103.
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4.1. The classical scaling invariance strategy

Finally, we report other results obtained by ignoring low viscosity values of the considered liquids. The model should be modified
as follows 8̂

<̂
ˆ̂:
�

d

dt

�
.`C cR/

d`

dt

�
D 2

� cos#

R

`.0/D 0 ,
d`

dt
.0/D 0 ,

(11)

This simplified model is invariant with respect to the scaling group

t� D �3=2t , `� D �` , R� D �R . (12)

As a consequence, for a given liquid, we can generate a family of similarity solutions from a computed reference one. Figure 4 displays
the numerical results for the computation with parameters

�D 815 Kg/m3 , � D 21 mN/m , �D 0 , # D 0ı , (13)

and RD 0.0025 mm.
These results can be contrasted with those reported in Figure 5 for the parameters, listed by Clanet and Quéré [20],

�D 815 Kg/m3 , � D 21 mN/m , �D 1 mPa � s , # D 0ı (14)

and RD 0.0025 mm.
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Figure 4. Adaptive step-size results: `.t/ and its first derivative. Solution computed by rescaling. Inviscid case�D 0 with RD 0.0025 mm.
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We can easily realize that this strategy would be useless for the considered class of problems. Indeed, the generated family of
similarity solution provides an upper bound for the real dynamics, but this is more expensive to get than the Washburn asymptotic
solution that provides a more accurate and inexpensive upper bound.

4.2. Numerical method and adaptive criteria

The numerical method used for all the reported results was the classical fourth order Runge–Kutta’s method implemented with the
adaptive procedure developed by Jannelli and Fazio [18]. The adaptive procedure has been applied to: a scalar flame propagation
problem [18], a reduced (four components only) air pollution model [18], and a 2 months start-up simulation for an aquarium
model [21].

For the adaptive procedure, we usually enforced the following conditions: �min � �.tk/� �max with �min D 10�2 and �max D 10 �min,
	 D 10�9, and�tmin � �tk � �tmax with, if not otherwise specified,�tmin D 10�12,�tmax D 10�1. We used a smaller value of�tmin
only in the direct solution of the test case with parameters denoted by PDMS5 and shown in the bottom frame of Figure 3. Moreover,
the time step was modified in two cases: when �.tk/ < �min we used �tkC1 D 2�tk as the next time step, or if �.tk/ > �max, then we
repeated the same step using�tk D�tk=2. Of course, a posteriori we have verified that also 	� verifies the condition 0< 	�� 1.

5. Concluding remarks

In this study, we have proposed an extended scaling invariance for the dynamics of a liquid penetrating inside a horizontal capillary.
By requiring the invariance of all the physical parameters involved in the mathematical model, we were able to show that the model
itself is left invariant by a scaling group depending on two arbitrary group exponents. As a consequence, we can choose a particular
group that allows us to compute by the scaling transformation a target solution from a computed simpler one. Indeed, several
choices are available and, for instance, we have performed some successful computations, for the PDMS series of silicone oils, with the
group exponents

ı D 3=2 , ˛1 D ˛2 D 1 , ˛3 D 3=2 , (15)

that satisfy the conditions (3). These results, omitted here for the sake of brevity, are reported in the note by Fazio et al. [22].
The approach proposed in this paper may also be used to get transformed numerical results for problems where the capillary radius

is at the levels of nanometers or in any case when the resolution of the initial transient would require a minimum step-size really small.
We have not pursued in investigating these specific cases, here, because the limit for the nondestructive liquid penetrant testing, used
in the industry, is a fracture of about 10 micron.

We have to remark that in the case of a vertical capillary, it is necessary to add to the right-hand side of the model (1), the term��g`
where g represents the acceleration of gravity. Moreover, further terms should be added to the model in order to take into account
the entrapped gas action in the case of a closed capillary. All these extended models require an extended scaling group that can be
defined following the analysis outlined in the present study.

The invariance properties of the considered monitor function are valid in more general settings and will be extended to different
monitor functions elsewhere.
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