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Abstract

We illustrate a three-dimensional mathematical model for the prediction of biological processes that
typically occur in a sea region with minor water exchange. The model accounts for particle transport due to
water motion, turbulent diffusion and reaction processes and we use a fractional-step approach for dis-
cretizing the related different terms.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the last years mathematical modeling and numerical simulation of reacting species in a fluid
became a theme of increasing environmental interest. Intensive efforts spent in predicting the
evolution of the mucilage in the Adriatic sea, notably for the events that lead to highest con-
centrations [8], constitute a good example of this increased interest.

A simple but reasonable mathematical model for the prediction of biological processes that
occur in the Adriatic sea, is the following:
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o

ot
ðqc1Þ þ r � ðqc1vÞ � r � ðl1rc1Þ ¼ a

c1c22
1þ bc22

� cc21;

o

ot
ðqc2Þ þ r � ðqc2vÞ � r � ðl2rc2Þ ¼ �d

c1c22
1þ c22

;

o

ot
ðqc3Þ þ r � ðqc3vÞ � r � ðl3rc3Þ ¼ u

c21
1þ wc21

;

ð1Þ

endowed by suitable initial and boundary conditions. Here c1ðx; tÞ, c2ðx; tÞ and c3ðx; tÞ represent
the grass–weed population, their nutrients and mucilage concentrations, respectively. In general
the water density q depends on the temperature and salinity, but this variation has a minor effect
on the problem at hand. Thus, for the sake of simplicity, in the following we assume a constant
value of q and take it equal to one. The right-hand side terms are ac1c22=ð1þ bc22Þ, grass–weed
logistic growth; �cc21, natural death for the grass–weed; �dc1c22=ð1þ c22Þ, loss of c2 for the con-
sumption due to c1; uc21=ð1þ wc21Þ, mucilage growth due to the grass–weed production [9]. The
constants a, b, c, d, u and w should be determined according to experimental results.

The velocity field vðx; tÞ ¼ ðu; v;wÞT is to be supplied in order to solve Eq. (1) and could be
possibly evaluated by a mathematical model that accounts for the hydrodynamics [1]. As the
mucilage is not uniformly distributed along the vertical, a hydrodynamic model giving the three-
dimensional (3D) flow field must be preferred and, in this respect, the depth-integrated mathe-
matical models (shallow water models) should be discarded.

The diffusion coefficients l1, l2 and l3 account for turbulent diffusion, which are typically much
more relevant than the molecular ones for the problems under interest. A rigorous evaluation of
these coefficients is a very intricate matter, we just refer to [6] for a survey of the literature on this
issue.

The model (1) is a time-dependent system of partial differential equations in three spatial di-
mensions. It takes into account physical and biological processes modeled by three distinct terms:

1. the interaction of the species essentially described by reaction terms (e.g., growth of species,
consumption of nutrients, etc.),

2. the motion of each component due to the turbulent nature of the flow field, modeled by the
(turbulent) diffusion terms,

3. the transport of each component due to the motion of the water, described by the advection
terms.

2. Numerical methods

In the present paper we consider a fractional step approach to solve numerically the system of
Eq. (1). Such a method consists in decoupling, in the discretized equations, the steps corre-
sponding to the advection, diffusion and reaction processes. This splitting is possible when a loose
coupling exists between these phenomena so that to each of them is associated with a different
characteristic time. In our case such kind of assumption holds and the use of a fractional step
seems to be promising, as it allows for adopting the optimal numerical approach to each term of
the equations.
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We rewrite (1) in the vectorial form ct ¼ AðcÞ þ DðcÞ þ RðcÞ, where we denote by AðcÞ, DðcÞ and
RðcÞ the advection, diffusion and reaction terms, respectively. To apply a fractional step method
several possibilities are available. For instance, it is possible to use the following Strang split-
ting [7]:

1. starting with a reference solution cn at time tn, solve ct ¼ AðcÞ over Dt=2,
2. use the obtained approximate solution and solve ct ¼ DðcÞ over Dt=2,
3. use the obtained approximate solution and solve ct ¼ RðcÞ over Dt,
4. use the obtained approximate solution and solve ct ¼ DðcÞ over Dt=2,
5. use the obtained approximate solution and solve ct ¼ AðcÞ over Dt=2 to get the approximate

solution cnþ1 at time tnþ1.

As far as the accuracy question is concerned, by using the Strang splitting technique we obtain
second order accuracy in time provided that each sub-problem is solved by a second order ac-
curate method [7]. Because of the nonlinearity of the problem, the stability conditions may vary as
the solution evolves. Given a Dtn, each of the five steps of the above splitting procedure must be
stable for Dtn, otherwise it is necessary to go back to reduce the current time step.

2.1. Advection term: ct ¼ A(c)

In this section we consider a proper discretization of the advection term

oc1
ot

þr � ðc1vÞ ¼ 0;

oc2
ot

þr � ðc2vÞ ¼ 0;

oc3
ot

þr � ðc3vÞ ¼ 0:

ð2Þ

Eq. (2) are three uncoupled convection equations for the three species. A huge body of literature
exists about accurate numerical solutions of these equations so that it is convenient to state first
the aspects that characterize the problem at hand. In our opinion, two mandatory requirements
arise: the discretization of (2) must be conservative and monotone. As the hydrodynamical terms
are responsible for variation in space and time of the species field, although they do affect their
total quantity, conservation means that the amount of each species in the computational domain
must be preserved by the numerical scheme. Monotonicity means that no numerical instabilities
should affect the results, yielding spurious oscillations and eventually to negative (meaningless)
concentrations.

In order to satisfy all the requirements mentioned above we consider a second order finite
volume method given within the CLAWPACK software, a set of Fortran routines, available on
Internet [4], for solving systems of conservation laws. The method is based on solving one-
dimensional (1D) Riemann problems at cell edges while applying flux-limiter function to suppress
oscillations. Multi-dimensional transport is modeled using wave-propagation approach in which
the flux at each cell interface is built up on the basis of information on the propagation in the
direction of the interface from neighboring cells.
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The method can be written in the form

cnþ1
i;j;k ¼ cni;j;k þ Dup

i;j;k �
Dt
Dx

eFFn
iþ1

2
;j;k

�
� eFFn

i�1
2
;j;k

�
� Dt

Dy
eGGn

i;jþ1
2
;k

�
� eGGn

i;j�1
2
;k

�
� Dt

Dz
eHHn

i;j;kþ1
2

�
� eHHn

i;j;k�1
2

�
;

where the first order upwind correction is defined by

Dup
i;j;k ¼ � Dt

Dx
u� Dciþ1;j;k

�
þ uþ Dci;j;k

�
� Dt

Dy
v� Dci;jþ1;k

�
þ vþ Dci;j;k

�
� Dt

Dz
w� Dci;j;kþ1

�
þ wþ Dci;j;k

�
:

The numerical fluxes u�Dc, v� Dc and w� Dc result from solving the 1D Riemann problem along
normal direction to each cell interface in the x-direction, y-direction and z-direction.

On the other hand, the numerical fluxes eFF, eGG and eHH are used to perform second order cor-
rection terms, transverse propagations and the corner transports as showed by LeVeque [5]. For
simplicity, only contributions to fluxes coming from solution of the Riemann problem in the
x-direction will be discussed in detail. The contributions from the other two sets of Riemann
problems are obtained in a similar manner with a change of the roles of fluxes.

The second order update is written as a correction to the flux, as in standard flux-limiter
methods

eFFiþ1
2
;j;k ¼

1

2
juiþ1

2
;j;kj 1

�
� Dt

Dx
juiþ1

2
;j;kj

�
Dci;j;kUi;j;k; ð3Þ

where Ui;j;k is the limiter that depends on the nature of the solution locally.
The multi-dimensional transport is characterized by splitting each flux differences u� Dci;j;k,

determined by solving the Riemann problem in x-direction, into two transverse flux differences
vþu� Dci;j;k and v�u�Dci;j;k. These are used to modify the nearby eGG fluxes,

eGGi�1
2
;jþ1

2
;k :¼ eGGi�1

2
;jþ1

2
;k �

1

2

Dt
Dx

vþuþ Dci;j;k;

eGGi�1
2
;j�1

2
;k :¼ eGGi�1

2
;j�1

2
;k �

1

2

Dt
Dx

v�uþ Dci;j;k;

eGGi�3
2
;jþ1

2
;k :¼ eGGi�3

2
;jþ1

2
;k �

1

2

Dt
Dx

vþu� Dci;j;k;

eGGi�3
2
;jþ1

2
;k :¼ eGGi�3

2
;j�1

2
;k �

1

2

Dt
Dx

v�u� Dci;j;k:

ð4Þ

In the same manner, the flux differences u�Dci;j;k are split into transverse flux differences in the z-
direction in order to obtain w�u� Dci;j;k. These are used to modify the nearby eHH fluxes. Once the
transverse corrections have been implemented, we proceed propagating also the second order
corrections in the transverse direction. Then, also these corrections are splitting, in the y-direction,
into up-going and down-going portions in exactly the same manner as u� Dci;j;k are split into
vþu� Dci;j;k and v�u�Dci;j;k. The same is done in the z-direction.

In 3D algorithm additional transverse terms are included into corner cells. These terms, called
‘‘corner transport’’ ones, are implemented by splitting each of the four terms v�u�Dci;j;k in the z-
direction, yielding wþv�u�Dci;j;k and w�v�u�Dci;j;k, which requires solving four more Riemann
problems. These term are used to update fluxes according to
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eHHi�1
2
;j�1

2
;kþ1

2
:¼ eHHi�1

2
;j�1

2
;kþ1

2
þ 1

6

Dt
Dx

Dt
Dy

wþvþuþDci;j;k �
1

6

Dt
Dx

Dt
Dy

wþv�uþ Dci;j;k;

eHHi�1
2
;j�1

2
;k�1

2
:¼ eHHi�1

2
;j�1

2
;k�1

2
þ 1

6

Dt
Dx

Dt
Dy

w�vþuþDci;j;k �
1

6

Dt
Dx

Dt
Dy

w�v�uþ Dci;j;k;

eHHi�1
2
;jþ1

2
;kþ1

2
:¼ eHHi�1

2
;jþ1

2
;kþ1

2
� 1

6

Dt
Dx

Dt
Dy

wþvþuþDci;j;k;

eHHi�1
2
;jþ1

2
;k�1

2
:¼ eHHi�1

2
;jþ1

2
;k�1

2
� 1

6

Dt
Dx

Dt
Dy

w�vþuþDci;j;k;

eHHi�1
2
;j�3

2
;kþ1

2
:¼ eHHi�1

2
;j�3

2
;kþ1

2
þ 1

6

Dt
Dx

Dt
Dy

wþv�uþDci;j;k;

eHHi�1
2
;j�3

2
;k�1

2
:¼ eHHi�1

2
;j�3

2
;k�1

2
þ 1

6

Dt
Dx

Dt
Dy

w�v�uþDci;j;k:

ð5Þ

Six similar updates are made to the cells to the left of the interface by replacing i� 1
2

� �
with i� 3

2

� �
and replacing uþ Dci;j;k by u�Dci;j;k in the above expression. In addition, the four terms w�u�Dci;j;k,
used in the updates of the nearby eHH fluxes, must be split in y-direction, yielding v�w�u�Dci;j;k and
vþw�u�Dci;j;k. These are then used to update neighboring eGG fluxes in a manner analogous to (5).

The above discretization automatically satisfies the conservation requirement. This can be seen
summing up all the cni;j;k (for fixed n). The monotonicity depends on the discretization adopted for
the flux.

As Fig. 1 shows, the x-component of velocity uiþ1
2
;j;k, the y-component of velocity vi;jþ1

2
;k, and the

z-component of velocity wi;j;kþ1
2
are centered at the right, back and top face of the cell, respectively,

whereas the concentrations ci;j;k are located at the center. This is the so-called marker-and-cell
(MAC) method [3].

Fig. 1. Location of velocity and concentration information in a MAC mesh cell.
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2.2. Diffusion term: ct ¼ D(c)

In this section we consider a proper discretization of the diffusion term

oc1
ot

�r � ðl1rc1Þ ¼ 0;

oc2
ot

�r � ðl2rc2Þ ¼ 0;

oc3
ot

�r � ðl3rc3Þ ¼ 0:

ð6Þ

Eq. (6) represents three uncoupled diffusion equations for the three species. The diffusion term is
discretized implicitly to avoid using small time steps when this is not dictated by considerations of
accuracy in detecting the correct dynamics of the population. As for the stability, the following
Crank–Nicolson scheme

cnþ1
i;j;k �

Dt
2DxDyDz

wnþ1
i;j;k ¼ cni;j;k þ

Dt
2DxDyDz

wn
i;j;k; ð7Þ

where

wn
i;j;k ¼ � DyDz bFFn

iþ1
2
;j;k

�n
� bFFn

i�1
2
;j;k

�
þ DxDz bGGn

i;jþ1
2
;k

�
� bGGn

i;j�1
2
;k

�
þ DxDy bHHn

i;j;kþ1
2

�
� bHHn

i;j;k�1
2

�o
ð8Þ

with

bFFiþ1
2
;j;k ¼ �liþ1

2
;j;k
ciþ1;j;k � ci;j;k

Dx
;

bGGi;jþ1
2
;k ¼ �li;jþ1

2
;k
ci;jþ1;k � ci;j;k

Dy
;

bHHi;j;kþ1
2
¼ �li;j;kþ1

2

ci;j;kþ1 � ci;j;k
Dz

;

ð9Þ

is unconditionally stable. This method is second order accurate in space and in time. The linear
system obtained is solved by the bi-conjugate gradient method [2, pp. 362–379]. Fig. 2 shows the
matrix of coefficients on a sample domain of 3
 4
 5 mesh points.

2.3. Reaction term: ct ¼ R(c)

The evolution in time of the species due to the reaction term is governed by

dc

dt
¼ r; ð10Þ

where, rT ¼ ac1c22=ð1þ bc22Þ � cc21;�dc1c22=ð1þ c22Þ;uc21=ð1þ wc21Þ
� �

. Here, we consider the simple
explicit second order Taylor method

cnþ1 ¼ cn þ Dt rðcnÞ þ 1

2
Dt2

or

oc
r

� �
ðcnÞ: ð11Þ
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3. Sample numerical results

In this section we set l1 ¼ 0:1, l2 ¼ 1, l3 ¼ 0:1, a ¼ 6:6, b ¼ 1, c ¼ 10, d ¼ 0:5, u ¼ 10 and
w ¼ 1. The results presented are determined on a computational domain Lx 
 Ly 
 Lz with
Dx ¼ Dy ¼ Dz ¼ 1, and a variable time step Dtn chosen to ensure a Courant number of about 0:9.
We always apply the Van Leer flux-limiter function for each wave.

In order to mimic the 3D circulation of a basin in a simple problem, we consider the following
velocity field:

u ¼ x1x xð � LxÞ y
�

� Ly

2

�
þ x2x xð � LxÞ z

�
� Lz

2

�
;

v ¼ �x1y y
�

� Ly

�
x

�
� Lx

2

�
;

w ¼ �x2z zð � LzÞ x
�

� Lx

2

�
;

ð12Þ

with x1 ¼ 0:01, x2 ¼ 0:001 and Lx ¼ 100, Ly ¼ 40, Lz ¼ 5. This velocity field satisfies the diver-
gence-free condition: ux þ vy þ wz ¼ 0 and provides a periodic circulation. The values of x1 and
x2 are chosen in order to have approximately an unitary period.

Fig. 3 shows the velocity field within the plane z ¼ 5 and resembles qualitatively the real cir-
culation within the northern Adriatic sea (see Fig. 1 in [8]). Note that at the upper surface of the
water the velocity field has zero z-component.

As a test case, we assume as initial conditions that there are no mucilage (c3) within the domain,
a uniform distribution of nutrient (c2) and a concentration of grass–weed (c1) localized only
within a part of the domain:

Fig. 2. Example of matrix of coefficients for the Crank–Nicolson method.

A. Jannelli et al. / Computers & Fluids 32 (2003) 47–57 53



c1ðx; y; z; 0Þ ¼
1 for 286 x6 32 166 y6 20 36 z6 5;

0 elsewhere;


c2ðx; y; z; 0Þ ¼ 1 everywhere;

c3ðx; y; z; 0Þ ¼ 0 everywhere:

ð13Þ

Moreover, we apply Neumann boundary conditions corresponding to no diffusive flux; the
convective one vanishes too because the velocity component normal to the boundary is null. The
Figs. 4–7 display the evolution of the concentrations at the upper surface of the sea. The nu-
merical results show that the mucilage field c3 is different from zero only in that part of the domain

Fig. 3. Velocity field within the plane z ¼ 5.

Fig. 4. Concentrations at t ¼ 0:3.
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Fig. 5. Concentrations at t ¼ 0:6.

Fig. 6. Concentrations at t ¼ 0:9.
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where c1 and c2 coexist. Its localization changes as c1 moves according to the circulation of the
assigned velocity field.

On biological ground, because of the consumption of nutrients due to c1, we would expect that,
fixed a point in the path of c1, the concentration c2 will be a decreasing function of time, during
the interaction between c1 and c2. No source term for c2 is considered in this test case. As a
consequence, in a long time period, we should observe a deformation of the bell shapes of the
concentrations. Actually, this is confirmed by the numerical results (contrast Fig. 4 with Fig. 7).

4. Conclusions

In recent years, the Adriatic sea has occasionally suffered high mucilage concentration, causing
relevant economic and ecological damages. In this paper, is proposed a first possible model
linking biology and hydrodynamic to predict this phenomenon.

Combining physical and biological processes, into the same mathematical model, we obtain a
time-dependent system of partial differential equations in three spatial dimensions. In order to
solve this model numerically, we use a fractional step approach where the solution procedure is
split up into distinct steps solved independently by the most suitable methods. The numerical
results confirm the qualitatively expected behavior.

Several items remain to be developed. First of all, the crude hydrodynamical description of this
paper should be substituted by a 3D calculation of the flow field. Secondly, the mucilage is to
grow abruptly in the Adriatic sea when the circulation is very small. A most interesting issue

Fig. 7. Concentrations at t ¼ 1:2.
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would then be to investigate if this kind of mathematical model is able to reproduce, at least
qualitatively, the influence of the hydrodynamical aspects that is observed in the abrupt growth of
the mucilage.
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