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Abstract. The main aim of this note is to help the students to get an
insight into the asymptotic stability concept by means of visual representa-
tion of the stability regions of different numerical methods. This facilitates
understanding of the meaning of stability for constant step sizes and the
related concept of stiffness in numerical initial-value problems. Moreover,
the distinction between A and L-stability of numerical methods can be more
easily understood.

1 Introduction.

The first quoted paper on the numerical solution of stiff problems is due
to Curtiss and Hirschfelder [5]. In 1952 they used the simple initial value
problem

dy
— =50y —cos z), y(0)=0, z€]l0,Zma,
dx
to explain stiffness and introduced the Backward Difference Formulae or BDF
methods to cope with stiff problems. By that time stiff problems had arisen
in most of the applied sciences. The book by Hairer and Wanner [9, pp.
2-12], provides examples of stiff problems from chemical reaction, electrical
circuits, mechanics, and methods of lines applied to diffusion problems. How-
ever, what does stiffness mean within numerical initial value problems? A
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mathematical definition of the stiffness concept cannot be stated in simple
terms. Lambert in his recent text book made four different ”statements” on
and gave a heuristic ”definition” of the stiffness concept [12, pp. 216-224].
These statements and definition lead to the following assertions pertinent to
stiffness:

1) “Explicit methods don’t work” quoted from Hairer and Wanner [9, p. 2J;
2) Stability is more a constraint on the step-size than accuracy;

3) The problem and the numerical method used contains widely different
evolving scales.

For a precise mathematical characterization of the stiffness concept the in-
terested reader is referred to the recent paper by Brugnano and Trigiante
[2]. The aforementioned characterization is given in a more general context,
namely for general ordinary differential equations, and therefore for simplic-
ity reasons will be omitted here.

Starting with the classical book by Henrici [10], the fundamental ques-
tions of consistency, order of local accuracy, zero-stability and convergence
of numerical methods for initial value problems have been treated in many
books on the subject. However, the convergence theorem is meaningless
within the stiffness context because it is concerned with the numerical so-
lution behaviour as the step-size goes to zero whereas the stiffness phe-
nomenon is related to fixed step-sizes. The stability of numerical methods
for constant step sizes is treated in several books [1, 3, 4, 7, 9, 11, 12, 18|.
However, generally no mention is made on how to plot the stability re-
gions of numerical methods. The author’s point of view is that we need
not only to teach the theory, but also we have to provide a laboratory
experience to the students to understand the theory. Hence, to this end
the author has used the MATLAB plotting capabilities. All the written
MATLARB files are available on internet from the anonymous ftp area at the
URL: ftp://ftp.mathworks.com/pub/contrib/v5/teaching/ALstab and
its mirror sites.

MATLAB has been used effectively to teach particular topics [15, 14] as
well as entire courses within numerical analysis [16, 17], scientific computing
[13] and computational physics [6].
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2 Numerical methods.

For simplicity we consider the scalar problem

d
=Jy) . @) =v0, @€ o0 Tmal

Let us introduce the constant mesh-size h = (20, — o)/ and grid-points
Tp = xg + nh for n = 0,1,2,..., N, and denote by ¥, the numerical ap-
proximation of the exact value y(z,). Moreover, we use the simple notation
fs = f(xs,ys). The following numerical methods will be considered: the 1-st
oder forward Euler

Yni1 =Yn +hf, for n=0,1,...,N—1; (2.1)
the 1st order backward Euler
Yni1 = Yn + hfnyn for n=0,1,...,N—1; (2.2)

the 2-nd order Taylor

2 |0x

and within the class of consistent and zero-stable k-steps Linear Multistep
Methods (LMMs)

2
yn+1=yn+hfn+h—lg+f%] for n=0,1,...,N—-1, (2.3)

k k
Zajynﬂ,j = h25jfn+lfj for n=Fk — 1, k, Ce N -1 s (24)

) )
where «;, §; for j = 0,1,...,k are constants with ap = 1 and |ay| +|5| # 0,
the 2-nd order: Adams-Bashforth (AB)

yn+1:yn+g[3fn—fn_1] for n=1,2,...,N—1, (2.5)
Adams-Moulton (AM)
yn+1:yn+g[fn+fn+1] for n=0,1,....N—1, (2.6)
and Backward Difference Formula (BDF)
Yni1l = gyn— éynl—i—;hfnﬂ for n=1,2,...,N—1. (2.7)

Note that the Taylor and the AM are one-step methods whereas the AB and
BDF are two-steps methods: to apply the two-steps methods we use as an
approximation of y(z;) the value obtained by a one-step method.
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3 Stability for constant step sizes.

The exact mathematical concept is the asymptotic stability (A-stability) of
numerical methods defined within Dalquist’s theory. In particular, applying
a method to Dalquist’s test problem

dy _

dx_)\y’ y(0)=1, z€]0,00), (3.1)

where A < 0, we require that the numerical solution verifies the asymptotic
condition lim,,_,+ y, = 0 . Note that the above request is motivated by the
asymptotic behaviour of the exact solution: (being A <0) lim y(z) = 0.

It is a simple matter to verify that the numerical solution y; = (1 + hA)*
of the forward Euler method yo = 1,yxs1 = wyr + hAyx is asymptotically
stable if and only if |1 +h\| < 1, so that h < —2/\. Hence the forward Euler
method is conditionally stable. On the other hand the numerical solution
yr = (1 — hA)~F of the backward Euler method yo = 1, yr1 = Y + hAYry1 i8
always asymptotically stable (for all A > 0). The backward Euler method is
unconditionally stable.

Exercise. Use the two MATLAB script files fEtest .m (forward Euler method)
and bEtest.m (backward Euler method) to verify the behaviour of the numer-
ical solution.

3.1 A stiff problem.

Let us consider an interesting example. For several values of the step size,
we apply the four 2-nd order methods introduced in Section 2 to the stiff
problem
W _ 19 (y—e")—e™, yo)=1 e [0,1] (3.2)
o= Y , y(0)=1, =z 1. .
In Table 1 we list the numerical approximation for y(1) obtained by the
four 2-nd order methods for several values of the step size. Figure 1 shows,
within a semi-logq scale, the results of Table 1.
To grasp the meaning of the obtained numerical results we have to study
the stability properties of the four 2-nd order methods.
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Table 1: Computed values of yy.

h Taylor  AB AM  BDF
0.1 5.44E + 10 —3.46E +06 0.3658 0.3679
0.0667 598E+12 1.41E+09 0.3679 0.3679
0.05 1.06E+13 —1.06E+11 0.3679 0.3679
0.04 779E+11 2.03E+12 0.3679 0.3679
0.0333 4.77TE+09 —1.23E+13 0.3679 0.3679

0.0133 0.3679 —5.36E 403 0.3679 0.3679
0.0125 0.3679 1.83E 4+ 02 0.3679 0.3679
0.0118 0.3679 —1.1296 0.3679 0.3679
0.0111 0.3679 0.3743 0.3679 0.3679
0.0105 0.3679 0.3679 0.3679 0.3679
0.0100 0.3679 0.3679 0.3679 0.3679
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Figure 1: Relative error in a semi-logyq scale for Taylor o, AB x, AM + and
BDF % 2-nd order methods. The MATLARB script is meth2nd.m. Type help
meth2nd at the MATLAB prompt line to get information on the script file.
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3.2 A-stability of the 2-nd order Taylor method.

A Taylor method applied to the differential equation of the Dalquist’s test
problem results in the formula

Ynt1 = R(1) Un , (3.3)

where R(pu) is the Taylor expansion of e# to the same order as the Taylor
method and p = Ah. Since yo = 1, by induction we get y, = [R(u)]™
and consequently for the A-stability of the method we must require that
IR(1)| < 1. Note that for the 2-nd order Taylor method R(u) = 1+ pu+ p?/2.
If i is real the above inequality gives us the limitation for the step-size
h < 2/|\|. By letting the value of A be complex we can consider the region
of the complex plane of the variable pu, called the A-stability region R4 of
the method, where |R(p)| < 1.

To get the A-stability region of a Taylor method we can proceed in two
different ways. The simplest one is to follow Lambert [12, p.202] and use the
“scanning technique” to find out the interior of the A-stability region. To
that end, let x 4+ 7y = p (not R(u), there is a misprint in Lambert’s book),
we scan for =Y < y <Y (Y > 0) the line z = X (usually X < 0) and
mark a point (z,y) if and only if |R(u)| < 1 ; then increment the X value
and repeat the scanning procedure. The second way, described by Gear [8,
p. 41], is known as the “boundary locus technique”. In the boundary locus
technique we concentrate on the boundary 0R 4 of the A-stability region. For
explicit one-step methods we can set R(y) = ¢ and determine () (where
p(0) = z(0) + iy(f)) by any polynomial root-finder (see again Gear [8, p.
41]). For the 2-nd order Taylor method we get the nonlinear system

L@ =) +a+1—cosd =0, zy+y—sind=0.

Butcher [4, p. 239] indicates the need to take 6 € [0,27 s] for an explicit
Runge-Kutta method of stages and order s < 4, hence of the Taylor’s method
of corresponding order, to get its complete stability region.

The Figure 2 shows the result of the described techniques applied to the
2-nd order Taylor method.
Exercise. Use the MATLAB scripts named al_tayl2.m and a2_tayl2.m to
get separate figures.
The A-stability of the 2-nd order AB, AM, and BDF methods is discussed
below within the general class of LMMs.
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Figure 2: A-stability region for the 2-nd order Taylor method: scanning
technique points marked by a dot and boundary locus technique by a solid
line. MATLAB script file a_Tay12.m.

3.3 A-stability of LMMs.
An alternative representation of the LMMs (2.4) is given by
P(E)ynt1-r = ho(E) furik ,

where
p(E) =Y a,EF7 . o(E) =3 BE"Y,
§=0 §=0

are, respectively, the first and second characteristic polynomials and E is the
shift operator defined by Ey, = y,.1 (E/ = E/7'E).

By applying a k-steps LMM to Dalquist’s test problem we get the finite
difference equation

[P(E) = po(E)ynt1-1 =0,
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where © = hA. For the solutions of this difference equation we apply the
method of Lagrange: by setting y, = r* and dividing by the common factor
"t we get

k

p(r) = po(r) = (a; — pB)r* 7 =0.

J=0

The k roots of this polynomial will be denoted by r4(u) for s =1,... k. Let
us denote by R4 the following region of the complex plane

RA:{ posofrs(p)| <1, for s=1,....k if |rj(u)]=1, then p/(r;)#0 }
and by 0R, its boundary. A method is said to be A-stable if
{p:Re(pn) <0} C Ry .

Remark. The zero-stability that is involved in Dalquist’s convergence theo-
rem is a particular case of the above definition: by setting u = 0 we consider
the roots r5(0), s = 1,..., k of the first characteristic polynomial p(r). Note
that all the considered numerical methods are consistent and zero-stable so
that they are convergent.

In order to get R4 with the boundary locus technique, we note that

for a value of u € OR,4 at least one of the roots should have module equal
to one, that is 7 = ¢? for § € [0,27). Therefore, 9R4 can be drawn by
= p(e?)/o(e?) for § € [0,27). Let us note here that for a consistent
and zero stable method the origin of the complex plane belongs to 0R4. To
ascertain that, take § = 0 that means u = p(1)/o(1) = 0, since o(1) # 0.
In fact, for a consistent method we have that p(1) = 0 and p/(1) — o(1) =0,
and for the method to be zero-stable the first characteristic polynomial must
have a simple root at one, hence p/(1) # 0 that implies (1) # 0.
Remark. The geometric interpretation of the boundary locus technique is
simple. We can consider p(r) — po(r) = 0 as a mapping from the complex
plane of the r variable to the complex plane of the y variable. Our interest
is to define the range of values of i coming from all r in the unit circle with
center the origin. For all » on the circumference of that unit circle there
exists a value of @ € [0, 27) such that r = €%, this defines OR .

To apply the boundary locus technique to a LMM we have to perform
some simple algebra. Given a LMM, the two complex numbers a+ib = p(e®)
and c+id = o(e") are known, whereas z +iy = p in unknown. Moreover, by
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Figure 3: A-stability regions for the 2-nd order AB (on the left) and AM
(right) methods. MATLAB files a_AB2.m and a_AM2.m.

setting u = p(e?) /o (e?) we get the complex equation (c+id)(z+iy) = a+ib
which is equivalent to the real linear system

ct —dy=a, dr+cy==>b,

where, since (1) # 0, the matrix of the coefficients has determinant A =
c? + d?> # 0, so that for each value of @ there exists a unique solution of
the above system given by = = (ac + bd)/A and y = (¢b — da)/A. The
reasoning reported above can be used to define an algorithm for plotting
the A-stability region of a given LMM. The corresponding MATLAB script
file named a_LMM.m is available from the MathWorks anonymous ftp site
mentioned above. As input data for a_LMM.m the user has to provide the
number of steps k and the coefficients «;, 5; for j = 0, ...,k of the first and
second characteristic polynomials.

Figure 3 shows the result of the application of the boundary locus tech-
nique described above to the 2-nd order AB and AM methods.

The boundary locus technique can also be applied to BDF methods.
Exercise. Use the MATLAB script named a_LMMs.m to reproduce the Fig-
ure 3 and to find out the A-stability region of the BDF2 method (compare the
obtained plot with that from the MATLAB script file a_-BDF2.m.)
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4 L-stability.

Figure 4: Solutions of (4.1). The exact solution y(z) = e ' + ¢ * is
drawn by a solid line. Numerical solutions with 11 mesh-points, + AM,
x backward Euler and o BDF methods. Plot obtained with the MATLAB

script methtra.m.

As we have found out in Section 3, the 2-nd order AM and BDF methods
are both A-stable. However, we cannot say that the two considered implicit
methods are equivalent. A method is called L-stable if the roots r; of the
second characteristic polynomial o(r) are strictly inside the unit circle, that
is |r;| < 1 for all j. For a L-stable method the line at infinity in the p plane
has to belong to R4. Let us propose a simple variation of the test problem
proposed in Section 3.1, in order to explain the meaning of the L-stability
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concept,

dy —2\ _ -2
ﬁz—loo(y—e J—e . y0)=2, zel0,1]. (41

Note that with respect to (3.2) we have only changed the initial condition.
However, that results in the presence of a fast transient in the exact solution
as illustrated by Figure 4. The same Figure shows the numerical results. For
the chosen step-size the AM method is unable to resolve the fast transient.
It is really a surprise for the students to verify that the 1st order backward
Euler method gives a qualitative numerical solution more reliable than that
provided by the 2nd order AM method. The three numerical methods used
herein are all A-stable. However, the backward Euler and BDF methods are
also L-stable, whereas the AM method is not. For a suitable numerical solu-
tion of problems belonging to the class of oscillatory problems the imaginary
axes in the p complex plane has to belong to the A-stability region of the
method used [1, p. 66]. In this context the BDF method is more reliable
than the AM method.

5 Final remarks.

Let us consider first the general solution of the governing differential equation
involved in (3.2) and (4.1): y(z) = ce™'%% + ¢~% where ¢ is an arbitrary
constant. The initial condition y(0) = 1 in (3.2) requires ¢ = 0 so that
we have the smooth solution y(z) = e~*. All other solutions approach this
smooth one after a “rapid transient”.

Exercise. Use the MATLAB script trajsti.m to get a plot of the family of
solutions.

As we have mentioned above the test problem (4.1) differs from problem
(3.2) because of the enforced initial condition (corresponding to ¢ = 1 in the
general solution). So that the particular solution for problem (4.1) is given
by y(z) = e 1907 4 77,

For those readers interested in the implementation of numerical methods
within MATLAB as well as in the numerical solution of problems of practical
interest we can quote the recent MATLAB ODE suite developed by Shampine
and Reichelt [19]. The suite contains a collection of M-files for solving initial
value problems and is freely available on internet from the anonymous ftp
area at the URL:
ftp://ftp.mathworks.com/pub/mathworks/toolbox/matlab/funfun.
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