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t. The main aim of this note is to help the students to get aninsight into the asymptoti
 stability 
on
ept by means of visual representa-tion of the stability regions of di�erent numeri
al methods. This fa
ilitatesunderstanding of the meaning of stability for 
onstant step sizes and therelated 
on
ept of sti�ness in numeri
al initial-value problems. Moreover,the distin
tion between A and L-stability of numeri
al methods 
an be moreeasily understood.1 Introdu
tion.The �rst quoted paper on the numeri
al solution of sti� problems is dueto Curtiss and Hirs
hfelder [5℄. In 1952 they used the simple initial valueproblem dydx = �50(y � 
os x) ; y(0) = 0 ; x 2 [0; xmax℄ ;to explain sti�ness and introdu
ed the Ba
kward Di�eren
e Formulae or BDFmethods to 
ope with sti� problems. By that time sti� problems had arisenin most of the applied s
ien
es. The book by Hairer and Wanner [9, pp.2-12℄, provides examples of sti� problems from 
hemi
al rea
tion, ele
tri
al
ir
uits, me
hani
s, and methods of lines applied to di�usion problems. How-ever, what does sti�ness mean within numeri
al initial value problems? A1



Sti�ness, A and L-Stability 2mathemati
al de�nition of the sti�ness 
on
ept 
annot be stated in simpleterms. Lambert in his re
ent text book made four di�erent "statements" onand gave a heuristi
 "de�nition" of the sti�ness 
on
ept [12, pp. 216-224℄.These statements and de�nition lead to the following assertions pertinent tosti�ness:1) \Expli
it methods don't work" quoted from Hairer and Wanner [9, p. 2℄;2) Stability is more a 
onstraint on the step-size than a

ura
y;3) The problem and the numeri
al method used 
ontains widely di�erentevolving s
ales.For a pre
ise mathemati
al 
hara
terization of the sti�ness 
on
ept the in-terested reader is referred to the re
ent paper by Brugnano and Trigiante[2℄. The aforementioned 
hara
terization is given in a more general 
ontext,namely for general ordinary di�erential equations, and therefore for simpli
-ity reasons will be omitted here.Starting with the 
lassi
al book by Henri
i [10℄, the fundamental ques-tions of 
onsisten
y, order of lo
al a

ura
y, zero-stability and 
onvergen
eof numeri
al methods for initial value problems have been treated in manybooks on the subje
t. However, the 
onvergen
e theorem is meaninglesswithin the sti�ness 
ontext be
ause it is 
on
erned with the numeri
al so-lution behaviour as the step-size goes to zero whereas the sti�ness phe-nomenon is related to �xed step-sizes. The stability of numeri
al methodsfor 
onstant step sizes is treated in several books [1, 3, 4, 7, 9, 11, 12, 18℄.However, generally no mention is made on how to plot the stability re-gions of numeri
al methods. The author's point of view is that we neednot only to tea
h the theory, but also we have to provide a laboratoryexperien
e to the students to understand the theory. Hen
e, to this endthe author has used the MATLAB plotting 
apabilities. All the writtenMATLAB �les are available on internet from the anonymous ftp area at theURL: ftp://ftp.mathworks.
om/pub/
ontrib/v5/tea
hing/ALstab andits mirror sites.MATLAB has been used e�e
tively to tea
h parti
ular topi
s [15, 14℄ aswell as entire 
ourses within numeri
al analysis [16, 17℄, s
ienti�
 
omputing[13℄ and 
omputational physi
s [6℄.
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al methods.For simpli
ity we 
onsider the s
alar problemdydx = f(x; y) ; y(x0) = y0 ; x 2 [x0; xmax℄ :Let us introdu
e the 
onstant mesh-size h = (xmax � x0)=N and grid-pointsxn = x0 + nh for n = 0; 1; 2; : : : ; N , and denote by yn the numeri
al ap-proximation of the exa
t value y(xn). Moreover, we use the simple notationfs = f(xs; ys). The following numeri
al methods will be 
onsidered: the 1-stoder forward Euleryn+1 = yn + hfn for n = 0; 1; : : : ; N � 1 ; (2.1)the 1st order ba
kward Euleryn+1 = yn + hfn+1 for n = 0; 1; : : : ; N � 1 ; (2.2)the 2-nd order Tayloryn+1 = yn + hfn + h22 "�f�x + f �f�y #n for n = 0; 1; : : : ; N � 1 ; (2.3)and within the 
lass of 
onsistent and zero-stable k-steps Linear MultistepMethods (LMMs)kXj=0�jyn+1�j = h kXj=0�jfn+1�j for n = k � 1; k; : : : ; N � 1 ; (2.4)where �j, �j for j = 0; 1; : : : ; k are 
onstants with �0 = 1 and j�kj+ j�kj 6= 0,the 2-nd order: Adams-Bashforth (AB)yn+1 = yn + h2 [3fn � fn�1℄ for n = 1; 2; : : : ; N � 1 ; (2.5)Adams-Moulton (AM)yn+1 = yn + h2 [fn + fn+1℄ for n = 0; 1; : : : ; N � 1 ; (2.6)and Ba
kward Di�eren
e Formula (BDF)yn+1 = 43yn � 13yn�1 + 23hfn+1 for n = 1; 2; : : : ; N � 1 : (2.7)Note that the Taylor and the AM are one-step methods whereas the AB andBDF are two-steps methods: to apply the two-steps methods we use as anapproximation of y(x1) the value obtained by a one-step method.
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onstant step sizes.The exa
t mathemati
al 
on
ept is the asymptoti
 stability (A-stability) ofnumeri
al methods de�ned within Dalquist's theory. In parti
ular, applyinga method to Dalquist's test problemdydx = �y ; y(0) = 1 ; x 2 [0;1) ; (3.1)where � < 0, we require that the numeri
al solution veri�es the asymptoti

ondition limn!1 yn = 0 : Note that the above request is motivated by theasymptoti
 behaviour of the exa
t solution: (being � < 0) limx!1 y(x) = 0 :It is a simple matter to verify that the numeri
al solution yk = (1+ h�)kof the forward Euler method y0 = 1; yk+1 = yk + h�yk is asymptoti
allystable if and only if j1+h�j < 1, so that h < �2=�. Hen
e the forward Eulermethod is 
onditionally stable. On the other hand the numeri
al solutionyk = (1� h�)�k of the ba
kward Euler method y0 = 1; yk+1 = yk+ h�yk+1 isalways asymptoti
ally stable (for all h > 0). The ba
kward Euler method isun
onditionally stable.Exer
ise. Use the two MATLAB s
ript �les fEtest.m (forward Euler method)and bEtest.m (ba
kward Euler method) to verify the behaviour of the numer-i
al solution.3.1 A sti� problem.Let us 
onsider an interesting example. For several values of the step size,we apply the four 2-nd order methods introdu
ed in Se
tion 2 to the sti�problem dydx = �100 �y � e�x�� e�x ; y(0) = 1 ; x 2 [0; 1℄ : (3.2)In Table 1 we list the numeri
al approximation for y(1) obtained by thefour 2-nd order methods for several values of the step size. Figure 1 shows,within a semi-log10 s
ale, the results of Table 1.To grasp the meaning of the obtained numeri
al results we have to studythe stability properties of the four 2-nd order methods.



Sti�ness, A and L-Stability 5Table 1: Computed values of yN .h Taylor AB AM BDF0:1 5:44E + 10 �3:46E + 06 0:3658 0:36790:0667 5:98E + 12 1:41E + 09 0:3679 0:36790:05 1:06E + 13 �1:06E + 11 0:3679 0:36790:04 7:79E + 11 2:03E + 12 0:3679 0:36790:0333 4:77E + 09 �1:23E + 13 0:3679 0:3679: : :0:0133 0:3679 �5:36E + 03 0:3679 0:36790:0125 0:3679 1:83E + 02 0:3679 0:36790:0118 0:3679 �1:1296 0:3679 0:36790:0111 0:3679 0:3743 0:3679 0:36790:0105 0:3679 0:3679 0:3679 0:36790:0100 0:3679 0:3679 0:3679 0:3679
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Sti�ness, A and L-Stability 63.2 A-stability of the 2-nd order Taylor method.A Taylor method applied to the di�erential equation of the Dalquist's testproblem results in the formulayn+1 = R(�) yn ; (3.3)where R(�) is the Taylor expansion of e� to the same order as the Taylormethod and � = �h. Sin
e y0 = 1, by indu
tion we get yn = [R(�)℄nand 
onsequently for the A-stability of the method we must require thatjR(�)j < 1. Note that for the 2-nd order Taylor method R(�) = 1+�+�2=2.If � is real the above inequality gives us the limitation for the step-sizeh < 2=j�j. By letting the value of � be 
omplex we 
an 
onsider the regionof the 
omplex plane of the variable �, 
alled the A-stability region RA ofthe method, where jR(�)j < 1.To get the A-stability region of a Taylor method we 
an pro
eed in twodi�erent ways. The simplest one is to follow Lambert [12, p.202℄ and use the\s
anning te
hnique" to �nd out the interior of the A-stability region. Tothat end, let x + iy = � (not R(�), there is a misprint in Lambert's book),we s
an for �Y � y � Y (Y > 0) the line x = X (usually X < 0) andmark a point (x; y) if and only if jR(�)j < 1 ; then in
rement the X valueand repeat the s
anning pro
edure. The se
ond way, des
ribed by Gear [8,p. 41℄, is known as the \boundary lo
us te
hnique". In the boundary lo
uste
hnique we 
on
entrate on the boundary �RA of the A-stability region. Forexpli
it one-step methods we 
an set R(�) = ei� and determine �(�) (where�(�) = x(�) + iy(�)) by any polynomial root-�nder (see again Gear [8, p.41℄). For the 2-nd order Taylor method we get the nonlinear system12 (x2 � y2) + x + 1� 
os� = 0 ; xy + y � sin� = 0 :But
her [4, p. 239℄ indi
ates the need to take � 2 [0; 2� s℄ for an expli
itRunge-Kutta method of stages and order s � 4, hen
e of the Taylor's methodof 
orresponding order, to get its 
omplete stability region.The Figure 2 shows the result of the des
ribed te
hniques applied to the2-nd order Taylor method.Exer
ise. Use the MATLAB s
ripts named a1 tayl2.m and a2 tayl2.m toget separate �gures.The A-stability of the 2-nd order AB, AM, and BDF methods is dis
ussedbelow within the general 
lass of LMMs.
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Figure 2: A-stability region for the 2-nd order Taylor method: s
anningte
hnique points marked by a dot and boundary lo
us te
hnique by a solidline. MATLAB s
ript �le a Tayl2.m.3.3 A-stability of LMMs.An alternative representation of the LMMs (2.4) is given by�(E)yn+1�k = h�(E)fn+1�k ;where �(E) = kXj=0�jEk�j ; �(E) = kXj=0�jEk�j ;are, respe
tively, the �rst and se
ond 
hara
teristi
 polynomials and E is theshift operator de�ned by Eyn = yn+1 (Ej = Ej�1E).By applying a k-steps LMM to Dalquist's test problem we get the �nitedi�eren
e equation [�(E)� ��(E)℄yn+1�k = 0 ;



Sti�ness, A and L-Stability 8where � = h�. For the solutions of this di�eren
e equation we apply themethod of Lagrange: by setting ys = rs and dividing by the 
ommon fa
torrn+1 we get �(r)� ��(r) = kXj=0(�j � ��j)rk�j = 0 :The k roots of this polynomial will be denoted by rs(�) for s = 1; : : : ; k. Letus denote by RA the following region of the 
omplex planeRA = n � : jrs(�)j � 1 ; for s = 1; : : : ; k if jrj(�)j = 1 ; then �0(rj) 6= 0 oand by �RA its boundary. A method is said to be A-stable iff� : Re(�) < 0g � RA :Remark. The zero-stability that is involved in Dalquist's 
onvergen
e theo-rem is a parti
ular 
ase of the above de�nition: by setting � = 0 we 
onsiderthe roots rs(0); s = 1; : : : ; k of the �rst 
hara
teristi
 polynomial �(r). Notethat all the 
onsidered numeri
al methods are 
onsistent and zero-stable sothat they are 
onvergent.In order to get �RA with the boundary lo
us te
hnique, we note thatfor a value of � 2 �RA at least one of the roots should have module equalto one, that is r = ei� for � 2 [0; 2�). Therefore, �RA 
an be drawn by� = �(ei�)=�(ei�) for � 2 [0; 2�). Let us note here that for a 
onsistentand zero stable method the origin of the 
omplex plane belongs to �RA. Toas
ertain that, take � = 0 that means � = �(1)=�(1) = 0, sin
e �(1) 6= 0.In fa
t, for a 
onsistent method we have that �(1) = 0 and �0(1)� �(1) = 0,and for the method to be zero-stable the �rst 
hara
teristi
 polynomial musthave a simple root at one, hen
e �0(1) 6= 0 that implies �(1) 6= 0.Remark. The geometri
 interpretation of the boundary lo
us te
hnique issimple. We 
an 
onsider �(r) � ��(r) = 0 as a mapping from the 
omplexplane of the r variable to the 
omplex plane of the � variable. Our interestis to de�ne the range of values of � 
oming from all r in the unit 
ir
le with
enter the origin. For all r on the 
ir
umferen
e of that unit 
ir
le thereexists a value of � 2 [0; 2�) su
h that r = ei�, this de�nes �RA.To apply the boundary lo
us te
hnique to a LMM we have to performsome simple algebra. Given a LMM, the two 
omplex numbers a+ib = �(ei�)and 
+ id = �(ei�) are known, whereas x+ iy = � in unknown. Moreover, by
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Figure 3: A-stability regions for the 2-nd order AB (on the left) and AM(right) methods. MATLAB �les a AB2.m and a AM2.m.setting � = �(ei�)=�(ei�) we get the 
omplex equation (
+id)(x+iy) = a+ibwhi
h is equivalent to the real linear system
x� dy = a ; dx + 
y = b ;where, sin
e �(1) 6= 0, the matrix of the 
oeÆ
ients has determinant � =
2 + d2 6= 0, so that for ea
h value of � there exists a unique solution ofthe above system given by x = (a
 + bd)=� and y = (
b � da)=�. Thereasoning reported above 
an be used to de�ne an algorithm for plottingthe A-stability region of a given LMM. The 
orresponding MATLAB s
ript�le named a LMM.m is available from the MathWorks anonymous ftp sitementioned above. As input data for a LMM.m the user has to provide thenumber of steps k and the 
oeÆ
ients �j; �j for j = 0; : : : ; k of the �rst andse
ond 
hara
teristi
 polynomials.Figure 3 shows the result of the appli
ation of the boundary lo
us te
h-nique des
ribed above to the 2-nd order AB and AM methods.The boundary lo
us te
hnique 
an also be applied to BDF methods.Exer
ise. Use the MATLAB s
ript named a LMMs.m to reprodu
e the Fig-ure 3 and to �nd out the A-stability region of the BDF2 method (
ompare theobtained plot with that from the MATLAB s
ript �le a BDF2.m.)
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Figure 4: Solutions of (4.1). The exa
t solution y(x) = e�100x + e�x isdrawn by a solid line. Numeri
al solutions with 11 mesh-points, + AM,� ba
kward Euler and o BDF methods. Plot obtained with the MATLABs
ript methtra.m.As we have found out in Se
tion 3, the 2-nd order AM and BDF methodsare both A-stable. However, we 
annot say that the two 
onsidered impli
itmethods are equivalent. A method is 
alled L-stable if the roots rj of these
ond 
hara
teristi
 polynomial �(r) are stri
tly inside the unit 
ir
le, thatis jrjj < 1 for all j. For a L-stable method the line at in�nity in the � planehas to belong to RA. Let us propose a simple variation of the test problemproposed in Se
tion 3.1, in order to explain the meaning of the L-stability
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on
ept, dydx = �100 �y � e�x�� e�x ; y(0) = 2 ; x 2 [0; 1℄ : (4.1)Note that with respe
t to (3.2) we have only 
hanged the initial 
ondition.However, that results in the presen
e of a fast transient in the exa
t solutionas illustrated by Figure 4. The same Figure shows the numeri
al results. Forthe 
hosen step-size the AM method is unable to resolve the fast transient.It is really a surprise for the students to verify that the 1st order ba
kwardEuler method gives a qualitative numeri
al solution more reliable than thatprovided by the 2nd order AM method. The three numeri
al methods usedherein are all A-stable. However, the ba
kward Euler and BDF methods arealso L-stable, whereas the AM method is not. For a suitable numeri
al solu-tion of problems belonging to the 
lass of os
illatory problems the imaginaryaxes in the � 
omplex plane has to belong to the A-stability region of themethod used [1, p. 66℄. In this 
ontext the BDF method is more reliablethan the AM method.5 Final remarks.Let us 
onsider �rst the general solution of the governing di�erential equationinvolved in (3.2) and (4.1): y(x) = 
e�100x + e�x, where 
 is an arbitrary
onstant. The initial 
ondition y(0) = 1 in (3.2) requires 
 = 0 so thatwe have the smooth solution y(x) = e�x. All other solutions approa
h thissmooth one after a \rapid transient".Exer
ise. Use the MATLAB s
ript trajsti.m to get a plot of the family ofsolutions.As we have mentioned above the test problem (4.1) di�ers from problem(3.2) be
ause of the enfor
ed initial 
ondition (
orresponding to 
 = 1 in thegeneral solution). So that the parti
ular solution for problem (4.1) is givenby y(x) = e�100x + e�x.For those readers interested in the implementation of numeri
al methodswithin MATLAB as well as in the numeri
al solution of problems of pra
ti
alinterest we 
an quote the re
ent MATLAB ODE suite developed by Shampineand Rei
helt [19℄. The suite 
ontains a 
olle
tion of M-�les for solving initialvalue problems and is freely available on internet from the anonymous ftparea at the URL:ftp://ftp.mathworks.
om/pub/mathworks/toolbox/matlab/funfun.



Sti�ness, A and L-Stability 12Referen
es[1℄ U. M. As
her and L. R. Petzold. Computer Methods for Ordinary Di�er-ential Equations and Di�erential-Algebrai
 Equations. SIAM, Philadel-phia, 1998.[2℄ L. Brugnano and D. Trigiante. On the 
hara
terization of sti�ness forodes. Dynami
s of Continuous, Dis
rete and Impulsive Systems, 2:317{335, 1996.[3℄ L. Brugnano and D. Trigiante. Solving Di�erential Problems by Mul-tistep Initial and Boundary Methods. Gordon & Brea
h, Amsterdam,1998.[4℄ J. C. But
her. The Numeri
al Analysis of Ordinary Di�erential Equa-tions Runge-Kutta and General Linear Methods. Wiley, Chi
hester,1987.[5℄ C. F. Curtiss and J. O. Hirs
hfelder. Integration of sti� equations. Pro
.Nat. A
ad. S
i. USA, 38:235{243, 1952.[6℄ A. L. Gar
ia. Numeri
al Methods for Physi
s. Prenti
e Hall, EnglewoodCli�s NJ, 2000. 2nd edition.[7℄ W. Gauts
hi. Numeri
al Analysis. An Introdu
tion. Birkhauser, Boston,1997.[8℄ C. W. Gear. Numeri
al Initial Value Problems in Ordinary Di�erentialEquations. Prenti
e Hall, Englewood Cli�s NJ, 1971.[9℄ E. Hairer and G. Wanner. Solving Di�erential Equations II: Sti� andDi�erential-Algebrai
 Problems. Springer, Berlin, 1991.[10℄ P. Henri
i. Dis
rete Variable Methods in Ordinary Di�erential Equa-tions. Wiley, New York, 1962.[11℄ A. Iserles. A First Course in the Numeri
al Analysis of Di�erentialEquations. Cambridge University Press, Cambridge, 1996.[12℄ J. D. Lambert. Numeri
al Methods for Ordinary Di�erential Systems.Wiley, Chi
hester, 1991.



Sti�ness, A and L-Stability 13[13℄ C. F. Van Loan. Introdu
tion to s
ienti�
 Computing, a Matrix-Ve
torApproa
h Using MATLAB. Prenti
e Hall, Upper Saddle River, 1997.[14℄ J. H. Mathews. Using MATLAB to obtain both numeri
al and graphi
alsolutions to hyperboli
 p.d.e.'s. Comp. Ed. J., IV:58{60, 1994.[15℄ J. H. Mathews and K. D. Fink. Using MATLAB as a programming lan-guage for numeri
al analysis. Int. J. Math. Edu
. S
i. Te
hnol., 25:481{490, 1994.[16℄ J. H. Mathews and K. D. Fink. Numeri
al Mesthods Using MATLAB.Prenti
e Hall, Upper Saddle River, 3rd edition, 1999.[17℄ A. Quarteroni, R. Sa

o, and F. Saleri. Numeri
al Mathemati
s.Springer, Berlin, 2000.[18℄ L. F. Shampine. Numeri
al Solution of Ordinary Di�erential Equations.Chapman & Hall, New York, 1994.[19℄ L. F. Shampine and M. W. Rei
helt. The MATLAB ODE suite. SIAMJ. S
i. Comput., 18:1{22, 1997.


