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Abstract. We present a survey of recent developments in the applications of the scaling concept to
numerical analysis. In addition, we report on some relevant topics not covered in existing surveys.
Therefore, the present work updates and complements the existing surveys on the subject concerned.

Applications of the scaling concept are useful in the numerical treatment of both ordinary and par-
tial differential problems. Applications to boundary-value problems governed by ordinary differential
equations are mainly related to their transformation into initial-value problems. Within this context,
special emphasis is placed on systems of governing equations, eigenvalue, and free boundary-value
problems. An error analysis for a truncated boundary formulation of the Blasius problem is also
reported. As far as initial-value problems governed by ordinary differential equations are concerned,
we discuss the development of adaptive mesh methods. Applications to partial differential problems
considered herein are related to the construction of finite-difference schemes for conservations laws,
the solution structure of the Riemann problem, rescaling schemes and adaptive schemes for blow-up
problems.

In writing this paper, our aim was to promote further and more important numerical applications
of the scaling concept. Meanwhile, the pertinent bibliography is highlighted and is available on inter-
net as the BIB filesc-gita.bib from the anonymousftp area at theURL ftp://dipmat.unime.it/
pub/papers/fazio/surveys.

Mathematics Subject Classifications (1991):Primary: 65L05, 65L10, 65M06, 65P05; secondary:
22E05, 34A50, 34B15, 35L65, 35K15, 76D10.

Key words: scaling concept, numerical analysis.

1. Introduction

Scaling analysis is concerned with the invariance of mathematical models with
respect to the scaling group of transformations (s-group). Let us consider a model
involving the independent variableη, the dependent variablef (η;p), and a para-
meterp. Our model might be the Blasius equation withp 6= 0 denoting the blowing
or suction parameter, or a first-order ordinary differential equation withp repre-
senting the value of the initial condition. We assume that our model is invariant
with respect to the s-group

η∗ = λδη, f ∗ = λαf, p∗ = λσp, (1.1)

whereλ is the exponential of the group parameter, andα, δ andσ are constants
determined by the required invariance or are sometimes arbitrary (see, for instance,
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2 RICCARDO FAZIO

the Blasius problem considered in Subsection 2.1.3). As a consequence of the in-
variance of the model with respect to (1.1), its solutions are self-similar, namely if
f (η;p) is a solution, thenfλ = λ−αf (λδη;λσp) is also a solution for anyλ > 0
so thatfλ is a family of solutions depending on the parameterλ. In applications, it
is useful to define invariants with respect to (1.1); for instance

dnf

dηn
(0)

[
dkf

dηk
(∞)

](nδ−α)/(α−kδ)
and

dnf

dηn
(0)p(nδ−α)/σ

are invariants for alln, k ∈ N. Note that the derivatives off with respect toη under
(1.1) are transformed as

dnf ∗

dη∗n
= λα−nδ dnf

dηn
for n ∈ N.

The book by Dresner [27] is concerned only with scaling analysis and its applica-
tions but is written in a clear and distinctive style and provides matter of interest to
those readers mainly concerned with the theoretical aspects of scaling analysis.

Scaling analysis represents an extension of the classical dimensional analysis
(see Bluman and Kumei [16, pp. 22–27]). On the other hand, scaling invariance
may be seen as a particular branch of the group invariance theory which was
initiated by the pioneering work of Lie [61] at the end of the last century. The
relevance of Lie’s theory was recognized by the mathematical community in the
first half of this century (see Howe [49]). In the second half of this century, group
invariance theory has been developed as a fundamental tool of applied mathematics
(see, for instance, the books by Birkhoff [14], Sedov [84], Hansen [47], Bluman
and Cole [15], Barenblatt [8], Ovsiannikov [77], Hill [48], Dresner [27], Ibragimov
[50], Seshadri and Na [85], Olver [75], Sattinger and Weaver [82], Bluman and
Kumei [16], Stephani [88], Gaeta [44], Olver [76], and Ibragimov [51 – 53]). As a
consequence, applications of group invariance theory have been reported for almost
every branch of applied sciences.

The subject of this survey belongs to the framework of the applications of
group invariance theory in numerical analysis. Indeed, several items of interest
that belong to this wider subject can be listed:

• the similarity methods for the solution of difference equations reported by Maeda
[62, 63], Levi and Winternitz [60], Quispel and Sahadevan [78], etc. (see also
the Proceedings [59]);
• the classical perturbation theory developed by Gröbner and his co-workers for

the numerical solution of initial value problems (IVPs) governed by ordinary
differential equations, as reported by Stetter [89, pp. 336–343];
• the construction of numerical schemes admitting symmetries for IVPs, with

recent contributions by Maeda [64], Crouch and Grossman [23], Munthe-Kaas
[66], Budd and Collins [19], and Iserles [54];
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• the classification of finite difference schemes for partial differential equations
(DEs) according to the invariance properties of their first differential approxi-
mation, see Yanenko and Shokin [94] and the book by Shokin [86];
• the construction of finite difference schemes inheriting all symmetry of the

original differential model, see Dorodnitsyn [25, 26].

We decided to focus our attention on the scaling concept for several reasons:

(1) this survey is written for a reader with no previous knowledge on group invari-
ance theory;

(2) to the best knowledge of the author no review or survey on the applications of
group invariance theory to numerical analysis have been published to date;

(3) the group invariance theory (involving infinitesimal generators, vector fields,
Lie’ groups, Lie’s algebra, etc.) is far more difficult to introduce and to apply
than the scaling analysis;

(4) the number and relevance of the different applications in this survey indicate
that the scaling concept is per se a valuable tool for the numerical analysis of
DEs.

Because of the great versatility of the scaling analysis, several applications have
been considered in connection with the numerical treatment of DEs. Some surveys
on this subject can be found in the literature: Ames [2, pp. 121–127] in 1968,
Klamkin [56] in 1970, and Ames [3, pp. 136–142] in 1972, discussed the nonit-
erative numerical solution of nonlinear boundary-value problems (BVPs); Na [70]
in 1979 devoted three chapters of his book (Chps 7–9) to computational methods
for BVPs on the same topic; Seshadri and Na [85, Chp 9] compared two different
approaches, namely the classical inspectional analysis and the infinitesimal group
method; Ames [4] in 1989 concentrated on surveying his own contribution to the
subject concerning essentially singular parabolic problems and eigenparameters
problems; and recently the present author [39] proposed a survey on the similar-
ity approach to the numerical solution of free BVPs. The present work updates
and complements the aforementioned surveys and is addressed to readers used to
solving applicative problems with a combination of theoretical and computational
tools.

The goal of this paper is to survey the applications of the scaling concept to nu-
merical analysis. In this context, we explain the leading ideas which have been used
in the literature. In this introduction we have outlined the framework of the subject
under concern, whereas the literature related to the topics of the survey is quoted in
the following sections. In this way, the pertinent bibliography on the subject is high-
lighted and is available on internet as the BIB filesc-gita.bib from the anony-
mousftp area at theURL ftp://dipmat.unime.it/pub/papers/fazio/surveys.
Not all the references listed in thesc-gita.bib file are cited in this survey because
the file in point results from the author’s interest on the proposed subject during the
last ten years.
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2. Ordinary Differential Problems

In this section we discuss the applications of the scaling concept to the numerical
treatment of ordinary differential problems. Several topics can be quoted:

(1) transformation of BVPs to IVPs:
(1.1) noniterative solution of eigenvalue problems;
(1.2) transformation of free BVPs to IVPs;
(1.3) error analysis for a truncated boundary approach to the Blasius problem;

(2) adaptive mesh methods for IVPs.

2.1. BOUNDARY-VALUE PROBLEMS

Hereafter, a transformation method (TM) is any transformation of BVPs to IVPs
resulting from the application of similar properties of a given model. The first
application of a noniterative TM was given by Töpfer in [90], where by considering
a series solution for the Blasius problem, he found a transformation that reduces
the BVP to a pair of IVPs. This result has been quoted in several books on fluid
dynamics (see, for instance, Goldstein [45, pp. 135–136]). Acrivos, Shah and Pe-
tersen [1] first and Klamkin [55] later extended Töpfer’s method, respectively, to a
more general problem and to a class of problems. Na [67, 68] showed the relation
between the invariance properties (with respect to an s-group of transformations)
of the considered problem and the applicability of a noniterative TM. Moreover,
Na considered BVPs at finite intervals and invariance with respect to a different
group of transformations (the spiral group: scaling in the independent variable
and translation in the dependent). The invariance of one and two or more physical
parameters, when they are involved in the mathematical model, were respectively
proposed by Na [69] and by Scott, Rinschler and Na [83]. It is also possible to ex-
tend the applicability of noniterative TMs by a transformation of variables linking
two different groups of transformations (see [28, 30]).

Let us remark here that, within the above context, the application of scaling
properties to the numerical solution of BVPs is based upon the following conjec-
ture:

CONJECTURE. Given an ordinary differential problem where the governing DEs
are invariant under an s-group, then every consistent initial-value method (one-step,
multi-step, predictor-corrector, etc.) is also invariant.

The above conjecture is easily verified in the case of the Taylor, Runge–Kutta
and linear multistep methods.

As remarked in the introduction, several surveys were written on the transforma-
tion of BVPs to IVPs. For this reason we refrain from giving a complete treatment
of this topic; we focus instead on two sub-topics where recent progress in our
understanding of the application of the scaling concept has been made; namely, the
case of simultaneous governing equations and the extension via the spiral group.
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Simultaneous equations. This topic was proposed by Klamkin [55] by considering
the following ordinary differential problem

d3f

dη3
+ f d2f

dη2
+ pgd2g

dη2
= 0,

d2g

dη2
+ q

(
f

dg

dη
− df

dη
g

)
= 0,

(2.1)
f (0) = df

dη
(0) = 0,

df

dη
(η)→ 2 asη→∞,

g(0) = 0,
dg

dη
(η)→ 2 asη→∞,

whereη, f andg are appropriate similarity variables andp andq represent two
physical parameters. This problem was obtained by Greenspan and Carrier [46]
via a similarity analysis of a partial differential problem in magnetohydrodynamics.
Note that, as shown by Rueter and Stewartson [80], there cannot be any solution if
p > 1. The governing DEs and the boundary conditions at the origin in (2.1) are
invariant with respect to the one-parameter s-group

η∗ = λ−αη, f ∗ = λαf, g∗ = λαg.
Nevertheless, it is not possible to transform the BVP into an IVP in the classical
way (because two noninvariant conditions are given at infinity). A two-parameter
group would be sufficient, but the equations do not admit any two-parameter groups.
Later on Klamkin [56] pointed out that the extension to BVPs governed by simul-
taneous equations is possible if the equations are invariant under a multi-parameter
group of transformations. The number of parameters should be at least equal to the
number of conditions at infinity plus the number of noninvariant conditions at the
origin.

Na [69] solved the above problem by a TM that makes use of the invariance of
p. In fact, the governing DEs and the boundary conditions at the origin are invariant
with respect to the two-parameter s-group

η∗ = λ−αη, f ∗ = λαf, g∗ = µβg, p∗ = λ2αµ−2βp.

As a consequence, a TM can be defined as follows: fix the values ofα, β andp∗,
the initial conditions

f ∗(0) = df ∗

dη∗
(0) = 0,

d2f ∗

dη∗2
(0) = 1,

g∗(0) = 0,
dg∗

dη∗
(0) = 1

are used to find, via a numerical integration, the asymptotic values

df ∗

dη∗
(η∗ → ∞), dg∗

dη∗
(η∗ → ∞);
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the application of the scaling properties provides the relations

λ =
[

df ∗

dη∗
(η∗ → ∞)/2

]1/(2α)

, µ =
[
λ−α

dg∗

dη∗
(η∗ → ∞)/2

]1/β

,

f (η) = λ−αf ∗(η∗), df

dη
(η) = λ−2α df ∗

dη∗
(η∗),

d2f

dη2
(η) = λ−3α d2f ∗

dη∗2
(η∗),

g(η) = µ−βg∗(η∗), dg

dη
(η) = λ−αµ−β dg∗

dη∗
(η∗),

p = λ−2αµ2βp∗.

A noniterative or an iterative TM are defined if we are interested in solving the
ordinary differential problem for a range of values ofp or for a particular value of
p. In the latter case, fix the value ofp so that we can iterate different values ofp∗
until the zero of the implicit defined function

E(p∗) = λ−2αµ2βp∗ − p
is found. To this end, a root-finding method can be applied.

Yakhot et al. [93] have introduced an iterative extension of Töpfer’s method
allowing for the treatment of a more general class of problems governed by simul-
taneous equations. Again, the invariance of the governing DEs and of the boundary
conditions at the origin under a one-parameter s-group is required. Let us show
how this extension can be applied to the problem (2.1). Fix the value ofα and the
initial conditions

f ∗(0) = df ∗

dη∗
(0) = 0,

d2f ∗

dη∗2
(0) = 1,

g∗(0) = 0,
dg∗

dη∗
(0) = ω∗

are used to find, via a numerical integration, approximate values of

df ∗

dη∗
(η∗ → ∞), dg∗

dη∗
(η∗ → ∞),

which are constants depending only onω∗. The application of scaling properties
shows that the solution of our problem is characterized by the zero of the following
implicit function

F(ω∗) = df ∗

dη∗
(η∗ → ∞)− dg∗

dη∗
(η∗ → ∞).

In fact,

df ∗

dη∗
(η∗ → ∞)− dg∗

dη∗
(η∗ → ∞) = λ2α

[
df

dη
(η→∞)− dg

dη
(η→∞)

]
;
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the quantity enclosed in square brackets being zero due to the boundary conditions.
The scaling properties allow us to obtain

λ =
[

df ∗

dη∗
(η∗ → ∞)/2

]1/(2α)

,

f (η) = λ−αf ∗(η∗), df

dη
(η) = λ−2α df ∗

dη∗
(η∗),

d2f

dη2
(η) = λ−3α d2f ∗

dη∗2
(η∗),

g(η) = λ−αg∗(η∗), dg

dη
(η) = λ−2α dg∗

dη∗
(η∗).

The extension of the above method to a system of three DEs was given by Ben-
Dor, Rabik and Igra [10]. In that case, the zero of a system of two implicit functions
was found by the Newton–Raphson method.

Let us note that if a first integral of one of the two governing DEs can be found,
then the original method of Töpfer can be applied to simultaneous DEs (e.g., the
numerical study of similarity solutions for combined forced and free convection
flow developed by de Hoog, Laminger and Weiss [24]).

Extension by the spiral group. The extension of noniterative TM has motivated
several contributions. In this context, the paper of Na [67] has had a real impact
because of the utilization of the spiral group. As a result, it has been thought that
TMs ought to be generalized by introducing groups different from the stretching
one, see Na and Hansen [71], Belford [9], Ames and Ibragimov [7], Ames and
Adams [5, 6], Na [70, pp. 155–160] or Seshadri and Na [85, pp. 157–168]. How-
ever, it is a simple matter to exhibit DEs not admitting any group of transformations
(see, for instance, Hill [48, pp. 81–82] who reported a classical example due to
Bianchi [13, pp. 470–475]). Consequently, we realize that noniterative TMs cannot
be extended to every BVP. Moreover, it is possible to prove that the two classes
of BVPs defined by the stretching and the spiral group are equivalent [35]. In this
instance, the example considered by Na [67] – and quoted by Na and Tang [72],
Klamkin [56], Ames [3, p. 140], Na [70, pp. 155–158], Seshadri and Na [85, pp.
157–168] or Ames [4] – belongs to the class of problems characterized by the spiral
group.

Let us report first the classical result:

THEOREM 1. The class of two-point BVPs

d2u

dx2
= u1−2δ2

(
xu−δ,

du

dx
uδ−1

)
,

(2.2)
du

dx
(0) = A[u(0)]1−δ, [u(L)]ζ8

(
du

dx
(L)[u(L)]δ−1

)
= B,
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8 RICCARDO FAZIO

whereA andδ are arbitrary constants,2(·, ·) and8(·) are arbitrary functions of
their arguments,L > 0, ζ 6= 0 andB 6= 0, can be solved noniteratively by solving
a related IVP.

Outline of the proof.The governing DE and the boundary condition atx = 0 in
(2.2) are invariant with respect to the s-group

x∗ = λδx, u∗ = λu. (2.3)

Hence, it is possible to define a noniterative TM. Letδ be fixed by the particular
problem under consideration, otherwise we can choose its value arbitrarily. We
fix a value ofu∗(0), whereupon according to the boundary condition, a value of
du∗/dx∗(0) is defined. Next, we integrate numerically the IVP

d2u∗

dx∗2
= u∗1−2δ2

(
x∗u∗−δ,

du∗

dx∗
u∗δ−1

)
, x∗ ∈ (0, L∗),

u∗(0) = X, du∗

dx∗
(0) = A[u∗(0)]1−δ,

whereX can be fixed at our convenience andL∗ is defined by

L∗ = L
{[ [u∗(L∗)]ζ

B
8

(
du∗

dx∗
(L∗)[u∗(L∗)]δ−1

)]1/ζ}δ
.

Finally, the scaling properties provides

λ =
[ [u∗(L∗)]ζ

B
8

(
du∗

dx∗
(L∗)[u∗(L∗)]δ−1

)]1/ζ

,

u(x) = λ−1u∗(x∗),
du

dx
(x) = λδ−1 du∗

dx∗
(x∗),

wherex ∈ [0, L] andx∗ ∈ [0, L∗]. 2

We note thatL∗ is not given explicitly, so that it can be considered as a zero of
an implicit function.

In the following we state a Theorem concerning the equivalence of two appar-
ently different classes of BVPs defined, respectively, by the spiral group and the
s-group.

THEOREM 2 (in [35]). The class of two-point BVPs

d2v

dx2
= e−2δv�

(
xe−δv,

dv

dx
eδv
)

(2.4)
dv

dx
(0) = Ae−δv(0), eζv(L)8

(
dv

dx
(L)eδv(L)

)
= B

can be solved noniteratively by the method defined in the proof of Theorem1.
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Outline of the proof.Via the variable transformation

x = x, u = ev, (2.5)

we can reduce the following spiral group

x∗ = λδx, v∗ = v + µ,
whereµ = ln(λ) is the group parameter, to the stretching group (2.3). Owing to
change of variable (2.5), the class of BVPs (2.4) in Theorem 2 transforms to the
class of BVPs (2.2) in Theorem 1 if we identify

2(·, ·) = �
(
xu−δ ,

du

dx
uδ−1

)
+
(

du

dx
uδ−1

)2

. 2

COROLLARY 3 (in [35]). u(x) > 0 for everyx ∈ (0, L).

Remark.The example due to Na [67] (therep = −1, see Na and Tang [72] for
p = 0 andp = 1)

d2v

dx2
+ p + 1

x

dv

dx
+ qev = 0,

(2.6)
dv

dx
(0) = 0, v(1) = 0,

belongs to the class of BVPs (2.4) characterized in Theorem 2, for

8(·) = 1, A = 0, L = 1, ζ = 1, B = 1

and

δ = −1/2, �(·, ·) = −p + 1

x

dv

dx
e−v − q.

Problem (2.6), under the transformation of variables (2.5), becomes

d2u

dx2
+ p + 1

x

du

dx
+ qu2 −

(
du

dx

)2

u−1 = 0,

(2.7)
du

dx
(0) = 0, u(1) = 1.

Therefore, a noniterative numerical solution of (2.6) can be obtained by solving
(2.7). The key point here is that invariance properties are preserved under the
transformation of variables (2.5).
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2.1.1. Eigenvalue Problems

The application of scaling properties to the numerical solution of eigenvalue prob-
lems was initiated by Belford [9]. Here we review the general idea.

THEOREM 4 (due to Belford [9]). The class of eigenvalue problems

d2u

dx2
= ω24(u),

u(0) = A, du

dx
(0) = 0, u(L) = 0,

whereω represents the positive eigenvalue,4(·) is a continuously differentiable
function ofu such that4(·) > 0 for u 6= 0 and4(0) = 0, andA > 0, can be
solved by a noniterative TM.

Outline of the proof.As a first step we eliminateω from the governing DE by
means of the following transformation of variables:

x∗ = ωx, u∗ = u.
Consequently, we can numerically solve the IVP

d2u∗

dx∗2
= 4(u∗),

u∗(0) = A, du∗

dx∗
(0) = 0

and, in this way, we approximate byx∗0 the unique zero ofu∗(x∗). The missing
boundary conditionu∗(ωL) = 0 is used in order to obtain the eigenvalue

ω = x∗0/L ⇐
{
u∗(ωL) = 0,
u∗(x∗0) = 0.

Finally, the eigenfunction can be easily obtained by a further numerical integra-
tion. 2

Even if the accuracy involved in the obtained eigenvalue depends on the error
related to the computation ofx∗0, we remark that the above procedure is self-
validating since, in the second numerical integration, we can verify the accuracy of
the obtained numerical approximation to the missed boundary conditionu(L) = 0.
Belford [9] proposed also an iterative version of this method for the case where
one of the boundary conditions at the origin is not invariant under the introduced
transformation of variables.

The proposed approach was extended by Ames and Adams [5] to a class of
problems. This topic has been included in a survey written by Ames [4] and there-
fore we refer the interested reader to it for more details and applications. An
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interesting application was given by Bromberg and Smullin [17], who solved an
eigenvalue problem governed by a nonlinear integro-DE via a noniterative TM.

2.1.2. Free Boundary-Value Problems

The first application of a noniterative TM to a free BVP was given by Fazio and
Evans [40]. In the past, the main drawback of noniterative TMs was that they were
not widely applicable (see the critical considerations by Fox, Erickson and Fan
[43], Na [70, p. 137] or Sachdev [81, p. 218]). In fact, the simplest way to verify
if a TM is applicable to a particular problem is to use an inspectional analysis, as
shown by Seshadri and Na [85, pp. 157–168] (cf. also the discussion on inspec-
tional analysis by Birkhoff [14, pp. 99–103]). In relation to the transformation of
free BVPs to IVPs, the present author has defined an iterative extension of the TM
which is widely applicable [33, 34, 36, 37].

The content of this subsection is motivated by two topics of general interest: the
free boundary formulation of BVPs on infinite intervals and the similarity reduction
of moving boundary problems (see Fazio [39]).

Let us define first a noniterative TM.

THEOREM 5 (in [36]). The following class of free BVPs

d2u

dx2
= u1−2δ2

(
xu−δ,

du

dx
uδ−1

)
,

[u(0)]ζ9
(

du

dx
(0)[u(0)]δ−1

)
= A, (2.8)

u(s) = Bs1/δ,
du

dx
(s) = Cs(1−δ)/δ,

where δ 6= 0, ζ 6= 0, A 6= 0, B and C are arbitrary constants,s represents
the unknown free boundary, and2(·, ·) and9(·) are arbitrary functions of their
arguments, can be solved by a noniterative TM.

Outline of the proof.The governing DE and of the two boundary conditions at
the free boundary in (2.8) are invariant with respect to the s-group

x∗ = λδx, s∗ = λδs, u∗ = λu.
The noniterative TM is defined as follows. Let the values ofδ, ζ,A,B andC be
fixed by the particular problem under consideration. We can fix a value fors∗ and,
according to the boundary conditions at the free boundary, this defines the values
of u∗(s) and du∗/dx∗(s). The governing DE in the starred variables along with
the obtained end-point conditions can be integrated inwards on[0, s∗] in order
to obtain the values ofu∗(0) and du∗/dx∗(0). As a consequence of the scaling
properties, we have

λ =
[ [u∗(0)]ζ

A
9

(
du∗

dx∗
(0)[u∗(0)]δ−1

)]1/ζ

,
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12 RICCARDO FAZIO

u(x) = λ−1u∗(x∗),
du

dx
(x) = λδ−1du∗

dx∗
(x∗), s = λ−δs∗,

wherex ∈ [0, s] andx∗ ∈ [0, s∗]. 2

An application of this noniterative TM to a singular free BVP is given in [29].
The above noniterative TM method is not widely applicable. However, it is

possible to introduce an iterative TM.

THEOREM 6 (in [36]). Suppose that the end-point problem

d2u

dx2
= h(1−2δ)/σf

(
h−δ/σ x, h−1/σu, h(δ−1)/σ du

dx

)
,

(2.9)
(s) = h1/σ j

(
h−δ/σ s

)
,

du

dx
(s) = h(1−δ)/σ`(h−δ/σ s)

is well-posed for every value of the parameterh (defined below). Then the class of
free BVPs

d2u

dx2
= f

(
x, u,

du

dx

)
,

g

(
u(0),

du

dx
(0)

)
= A, (2.10)

u(s) = j (s), du

dx
(s) = `(s)

can be solved numerically by an iterative TM.
Outline of the proof.The class of problems (2.10) is recovered from the follow-

ing

d2u

dx2
= h(1−2δ)/σf

(
h−δ/σ x, h−1/σu, h(δ−1)/σ du

dx

)
,

hζ/σ g

(
h−1/σu(0), h(δ−1)/σ du

dx
(0)

)
= A, (2.11)

u(s) = h1/σ j
(
h−δ/σ s

)
,

du

dx
(s) = h(1−δ)/σ`(h−δ/σ s),

by settingh = 1. The governing DE and the two boundary conditions at the free
boundary in (2.11) are invariant with respect to the s-group

x∗ = λδx, s∗ = λδs, u∗ = λu, h∗ = λσh.
The iterative method can be defined as follows. We iterate different values ofh∗
until we find|h− 1| within a prefixed tolerance. To this end, we fixδ, σ, ζ ands∗,
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NUMERICAL APPLICATIONS OF THE SCALING CONCEPT 13

and integrate inwards on[0, s∗] the end-point problem (2.9) in the starred variables.
In this wayu∗(0) and du∗/dx∗(0) are uniquely defined. Hence, we have

λ =
[
h∗ζ/σ

A
g

(
h∗−1/σu∗(0), h∗(δ−1)/σ du∗

dx∗
(0)
)]1/ζ

,

u(x) = λ−1u∗(x∗),
du

dx
(x) = λδ−1du∗

dx∗
(x∗),

s = λ−δs∗, h = λ−σh∗,
wherex ∈ [0, s] andx∗ ∈ [0, s∗]. 2

Note that the conditionh = 1 is equivalent to finding a root of the implicit
function (the ‘transformation function’)

0(h∗) = [λ(h∗)]−σ h∗ − 1

and, consequently, to this end a root-finding method can be applied. The iterative
TM was applied in [34] to the similarity reduction of the Stefan problem and to
a model describing the spreading of a viscous fluid above a smooth horizontal
surface.

The following theorem provides the link between the solutions of the free BVP
and the roots of the transformation function0(·).

THEOREM 7 (in [38]). Lets∗, δ, σ andζ be fixed and the end-point problem(2.9)
be well-posed for every value ofh∗. The free BVP has a unique solution if and only
if the transformation function has a unique real root; nonexistence(nonuniqueness)
of the solution is equivalent to the nonexistence of a real root(existence of more
than one real root) of 0(·).

Outline of the proof(by invariance considerations). There exists a one-to-one
and onto function between the set of solutions of the free BVP and the set of real
roots of the transformation function. The thesis of the theorem follows as a simple
consequence.

The key idea is that the mentioned function can be defined in the following way.
Given a solution of the free BVP(s, u(x)), we can associate to it the real root of
0(·) defined byh∗ = (s∗/s)σ/δ and vice versa. 2

A first application of this theorem was given, on an intuitive basis, for a model
describing the length estimation of tubular chemical reactors in [31], further appli-
cations can be found in [38].
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14 RICCARDO FAZIO

2.1.3. Error Analysis

In this subsection we consider the celebrated Blasius problem of boundary-layer
theory:

d3f

dη3
+ f d2f

dη2
= 0,

(2.12)
f (0) = df

dη
(0) = 0,

df

dη
(η)→ 1 asη→∞.

The governing DE and the two boundary conditions at the origin in (2.12) are
invariant with respect to the s-group

η∗ = λ−α, f ∗ = λαf, (2.13)

whereα can be fixed at our convenience, classicallyα = 1/3; but here we setα = 1
in order to simplify the analysis. Let us remark that the invariance mentioned above
has both analytical and numerical interest. From a numerical viewpoint, a noniter-
ative TM was defined by Töpfer [90] by transforming the boundary conditions to
initial conditions. Owing to this transformation, a simple existence and uniqueness
theorem for the solution of the problem was given by J. Serrin, as reported by
Meyer [65, pp. 104–105].

The boundary condition at infinity in (2.12) is certainly not suitable for a nu-
merical treatment. This condition has usually been replaced by the same condition
applied at a truncated boundary (see Collatz [22, pp. 150–151] or Fox [42, p. 92]).
In the truncated boundary formulation,fM(η) is defined by

d3fM

dη3
+ fM d2fM

dη2
= 0,

(2.14)
fM(0) = dfM

dη
(0) = 0,

dfM
dη

(M) = 1,

whereM represents the truncated boundary. It is evident that also in (2.14) the
governing DE and the two boundary conditions at the origin are left invariant by
(2.13).

For the error related to the truncated boundary solutionfM(η) defined by

e(η) = |f (η)− fM(η)|, η ∈ [0,M],
the following theorem holds true.

THEOREM 8 (due to Rubel [79]). A truncated boundary formulation of the Bla-
sius problem introduces an error which verifies the following inequality

e(η) 6 M d2fM

dη2
(M)[fM(M)]−1.
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NUMERICAL APPLICATIONS OF THE SCALING CONCEPT 15

Outline of the proof.As proved by Weyl [92], it is true that

d2f

dη2
(η) > 0, for η ∈ (0,∞). (2.15)

By (2.15) and taking into account the boundary conditions in (2.12), we have that

df

dη
(η) and f (η) are increasing functions onη ∈ (0,∞).

As a consequence, the functionλ2(df/dη)(λM) is zero forλ = 0, increases with
λ and tends to infinity asλ→∞. For some value ofλ ∈ (0,∞), we must have

λ2df

dη
(λM) = 1.

This value verifiesλ > 1 becauseλM is a finite value, df/dη(η) is an increasing
function and df/dη(η) → 1 asη → ∞. For this particular value ofλ, due to the
scaling properties, we have found thatfM(η) = λf (λη) becauseλf (λη) verifies
the BVP (2.14) that definesfM(η) uniquely.

Hence, the error forη ∈ [0,M] is given by

e(η) = |λf (λη)− f (η)| 6 |(λ− 1)f (λη)| + |f (λη)− f (η)|.
By applying the mean-value theorem of differential calculus and taking into ac-
count that df/dη(η) 6 1 we get the relationsf (λη) 6 λη and|f (λη)− f (η)| 6
(λ− 1)η. As a result

e(η) 6 M(λ2− 1), η ∈ [0,M],
whereλ2− 1> 0 becauseλ > 1. Naturally, dfM/dη(η→∞) = λ2, so that

λ2− 1 = dfM
dη

(η→∞)− dfM
dη

(M)

=
∫ ∞
M

d2fM

dη2
dη.

To complete the proof, Rubel used some manipulations involving a first integral of
the governing DE, to find that

λ2− 16 d2fM

dη2
(M)[fM(M)]−1. 2

Remark. As a consequence of this theorem, in order to control the error we
can modify either the value ofM or the value of d2fM/dη2(M). Classically, the
value ofM has been chosen to this end. The above theorem shows that the error
is directly proportional toM. In Fazio [32], a free-boundary formulation of the
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16 RICCARDO FAZIO

Blasius problem was introduced where the second-order derivative of the solution
with respect toη at the free boundary can be chosen as small as possible.

2.2. ADAPTIVE MESH METHODS FOR INITIAL-VALUE PROBLEMS

In this subsection, we follow Budd and Collins [19] in defining an adaptive mesh
method for a model blow-up equation. Let us consider the IVP

du

dt
= um, m > 1, u(0) = u0, (2.16)

which has the exact solution

u(t) = [u1−m
0 − (m− 1)t

]1/(1−m)
,

blowing-up in the finite time

u(t)→∞ ast → 1

m− 1
u1−m

0 .

The governing DE is invariant with respect to the following s-group

t∗ = λ1−mt, u∗ = λu. (2.17)

Note thattum−1 is an invariant. Let us introduce for (2.16) the explicit Euler method
with an adaptive mesh

Un+1 = Un +1tnUnm, (2.18)

whereUn is the numerical approximation tou(tn) and1tn = tn+1 − tn is to be
defined. Let us call1 the following invariant:

1 = Unm−11tn,

which defines the adaptive mesh

1tn = Un1−m1, (2.19)

where1 > 0, being invariant, is a constant. Apart from rounding errors, the smaller
the value given to1 the more accurate the numerical solution. By substituting
(2.19) into (2.18), we get

Un+1 = Un(1+1), (2.20)

whereupon the method (2.18), with the mesh defined by (2.19), becomes invariant
under the action of the s-group (2.17). A simple way to verify the latter assertion
is to write (2.20) in the starred variables and then substitute (2.17); the obtained
relationship is independent onλ. As a consequence of (2.20), we have that

Un = U0(1+1)n.
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Hence,Un→∞ asn→∞. Moreover,

tn =
n−1∑
j=0

1tj = 1
n−1∑
j=0

Uj
1−m = U0

1−m1− (1+1)n(1−m)
1− (1+1)1−m 1,

and, consequently,

tn→ U0
1−m 1

1− (1+1)1−m =
1

m− 1
U0

1−m +O(1).

The numerical solution blows-up for a finite value oft and estimates this value to
an accuracy of O(1).

Budd and Collins [19] reported some numerical experiments showing the re-
markable performance of the adaptive mesh method and provided an interpretation
of the method as a moving mesh method. Moreover, by comparing the above
method with the classical Euler methods and with a method inheriting all the
symmetries proposed by Dorodnitsyn [26], Budd and Collins found out that the
classical methods are unable to reproduce the correct solution behavior and that
the other method, requiring the same amount of work as solving the problem
analytically, is useless as a practical numerical method.

Let us note here that, owing to (2.19),1tn ∝ Un−m. SinceUn
m is a first-order

approximation of the gradient of the solution attn, the performance of the adaptive
mesh method can be explained as follows: if the gradient of the solution is large
– that is, the solution is rapidly varying – then the step length becomes smaller so
that grid-points are introduced where they are needed.

3. Partial Differential Problems

In this section, we discuss the applications of the scaling concept to the numerical
treatment of partial differential problems. Three topics are considered:

(1) finite difference schemes and their numerical properties;
(2) the solution structure of the Riemann problem;
(3) rescaling and adaptive schemes for blow-up problems.

3.1. FINITE DIFFERENCE SCHEMES AND THEIR NUMERICAL PROPERTIES

The analysis given below can be also applied to models governed by parabolic or
elliptic equations or to higher-order or implicit methods. For the sake of simplicity,
we consider the simplest model and a simple numerical scheme.

Let us consider the one-dimensional scalar conservation law
∂u

∂t
+ ∂

∂x

[
f (u)

] = 0 (3.1)

along with the related initial condition

u(x,0) = u0(x), (3.2)
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18 RICCARDO FAZIO

wheret > 0, x ∈ R, f (·) ∈ C2(R) andu0(·) is a given function of its argument.
The IVP (3.1)–(3.2) has been used as a prototype model problem in order to de-
velop numerical methods that can be extended to systems and to multi-dimensional
problems (see LeVeque [58, p. 12]).

For the numerical solution of (3.1) let us consider the upwind method given by
the explicit finite-difference formula

Ui,j+1 = Ui,j − cF(Ui−1,j , Ui,j , Ui+1,j ),

F (·, ·, ·) =
{
f (Ui,j )− f (Ui−1,j ) if df

du (Ui,j ) > 0,
f (Ui+1,j )− f (Ui,j ) if df

du (Ui,j ) < 0,

whereUi,j ≈ u(i1x, j1t) and c = 1t/1x is the Courant number. The order
of the local truncation error[te] and the local stability condition for the upwind
method are respectively

[te] = O
(
1t
)+O

(
1x
)

and
1t

1x
6
∣∣∣∣dfdu (Ui,j )

∣∣∣∣−1

.

Given a finite difference scheme, a mesh refinement is usually applied in order
to verify the numerical convergence of the obtained results. A mesh refinement
can be introduced by assuming that the mesh lengths transform according to the
following definition:

1t∗ = λ1t, 1x∗ = λ1x,
whereλ ∈ (0,1) (e.g., λ ∈ {2/3,3/4,4/5, . . . , k/(k + 1)} in [74, p. 122] or
λ ∈ {1/2,1/4,1/8, . . . ,1/2k} in [41]). The stability condition and the order of
the truncation error are left-invariant by the proposed refinement, because

1t∗

1x∗
= 1t

1x
6
∣∣∣∣dfdu (Ui,j )

∣∣∣∣−1

and

[te]∗ = λ[te]. (3.3)

The relation (3.3) represents a different way to verify the consistency of the con-
sidered method, because it means that the truncation error goes to zero asλ tends
to zero.

As far as properly posed IVPs are concerned, the Lax–Richtmyer theorem states
that for a consistent scheme convergence and stability are equivalent (see Lax
and Richtmyer [57]). This result justifies the numerical convergence that can be
obtained for finite difference schemes by a mesh refinement.
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3.2. THE SOLUTION STRUCTURE OF THE RIEMANN PROBLEM

Let us now consider the simple Riemann problem where the initial condition (3.2)
takes the form

u(x,0) =
{
ul, x < 0,
ur, 0< x.

Hereul andur are constants satisfying the conditionul 6= ur . Equation (3.1) is
invariant with respect to the s-group

t∗ = λt, x∗ = λx, u∗ = u,
whereλ ∈ R+ − {0}. As a consequence, the variable transformation

ξ = xt−1, u = u(ξ)
allows us to rewrite (3.1) as follows[

df

du
(u(ξ))− ξ

]
du

dξ
= 0. (3.4)

It is now evident that the solution of the Riemann problem has to be related to the
following three types of solution of (3.4):

(1) ‘Constant states’: these solutions verify the condition du/dξ = 0 and therefore
are classical solutions given byu(ξ) = const.

(2) ‘Shock waves’: (nonclassical) solutions of the form

u(ξ) =
{
u0, ξ < s,
u1, s < ξ ,

whereu0 andu1 are constants ands = [f (u0)− f (u1)]/(u0 − u1). Note that
the definition ofs follows from the Rankine–Hugoniot jump condition.

(3) ‘Rarefaction waves’: these are continuous solutions of the DE

df

du
(u(ξ)) = ξ. (3.5)

In fact, by assuming d2f/du2(u) > 0 (or< 0) on a given range ofu, we have
that df/du(·) is a strictly monotone function ofu and, therefore, invertible
there. Moreover, if we differentiate (3.5) with respect toξ , we find that

d2f

du2
(u(ξ))

du

dξ
(ξ) = 1

and, consequently, du/dξ(ξ) is finite and always has the same sign. In this
case, a rarefaction wave might connect continuously two constant states, say
u0 and u1, when ξ lies between df/du(u0) and df/du(u1). On the other
hand, if d2f/du2(u) = 0 somewhere, then du/dξ(ξ) goes to infinity and,
consequently, at those points we have a shock.
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20 RICCARDO FAZIO

The similarity analysis reported above has been used for the solution of the
Riemann problem (see Smoller [87, pp. 266–303]).

3.3. RESCALING AND ADAPTIVE SCHEMES FOR BLOW-UP PROBLEMS

A large class of nonlinear evolution equations with scale-invariant structure and
blowing-up solutions has been studied extensively during the last decades. Some
examples include reaction-diffusion equations such asut−1u = um or ut−1u =
eu, which have been used as models of combustion and the nonlinear Schrödinger
equationiut − 1u = |u|m−1u which is a model for problems in plasma physics
and nonlinear optics. Berger and Kohn [11] were the first to use a scaling concept
to define numerical schemes for blowing-up solutions. For the sake of simplicity,
let us consider the simple blow-up equation

ut = uxx + um, m > 1. (3.6)

This equation is invariant with respect to the following s-group

x∗ = λ(1−m)/2x, t∗ = λ1−mt, u∗ = λu. (3.7)

As a consequence, we have the following scale-invariance property: ifu(x, t) is a
solution of (3.6), thenuλ(x, t) defined by

uλ(x, t) = λ−1u(λ(1−m)/2x, λ1−mt)

is also a solution of (3.6) for anyλ > 0. The key idea of rescaling algorithms is
that we can setλ to be large wheneveru(x, t) is large, keeping the rescaled solution
uλ(x, t) bounded. However, in order to avoid a loss of accuracy, due to the fact that
the independent variables are stretched by the rescaling, additional points can be
introduced for the computation ofuλ(x, t) (for details, see Berger and Kohn [11]).

The above approach is more general and was introduced for a different context:
Chorin [21] defined a rescaling algorithm for the solution of the three-dimensional
Euler and Navier–Stokes equations.

An alternative to rescaling is to define adaptive mesh schemes. We again follow
Budd and Collins [19] and consider Equation (3.6) which is invariant with respect
to the s-group (3.7). Denote byUn

j the numerical approximation tou(Xn
j , tn), where

tn is the nth time step andXn
j defines the spatial mesh. For any scheme to be

scaling-invariant, we have to require that if(Xn
j , tn, U

n
j ) is a numerical solution,

then(λ(1−m)/2Xn
j , λ

1−mtn, λUn
j ) is also a solution.

Note thattum−1 andxu(m−1)/2 are invariant. By defining

1tn = tn+1 − tn and 1Xn
j = Xn

j+1−Xn
j ,

a scaling-invariant mesh is obtained by setting

1tn = 1max
j

[
Un
j

]1−m
and 1Xn

j = 1X
[

1

2

(
Un
j+1+ Un

j

)](1−m)/2
,
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where1 > 0 and1X > 0, being invariant, are constants. Note that, if we assume
thatm > 2, then1tn and1Xn

j are small whenUn
j is large. Apart from rounding

errors, the smaller the values given to1 and1X the more accurate the numerical
solution.

For numerical results, related to the application of self-similar adaptive mesh
schemes, the interested reader is referred to Berger and Kohn [11] and Budd, Huang
and Russell [20]. Moreover, Budd and Collins [18] used an invariant moving-mesh
scheme for the nonlinear diffusion equation and a further application of self-similar
mesh scheme has been used in the study of singularity formation in lubrication
models of fluid flows (see Bertozzi [12] and the references quoted therein).

4. Conclusions

In the introduction we explained in a very simple way the meaning and the con-
sequences of the scaling concept. Sections 2 and 3 were devoted to surveying
the applications of the concept to the numerical treatment of ordinary and partial
differential problems, respectively. Hence, we have tried to present a simple and
comprehensive account of the applications of the scaling concept to numerical
analysis. Although several of these applications are already known to researchers
working in the field, some of them have received minimal attention in the literature.
As an example, the error analysis for a truncated boundary formulation of the
Blasius problem dating back to 1955 shows that the introduced error is directly
proportional to the value of the truncated boundary, but it is a simple matter to
report on recent studies where it is suggested that an increment of the truncated
boundary should be used in order to assess the accuracy of the computed solution
(see Nasr, Hassanien and El-Hawary [73] and the references quoted therein, in
particular Wadia and Paine [91]).
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