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Abstract—In this paper, we study first and second

order positive numerical methods for the advection

equation. In particular, we consider the direct dis-

cretization of the model problem and comment on its

superiority to the so called method of lines. More-

over, we investigate the accuracy, stability and posi-

tivity properties of the direct discretization. The nu-

merical results related to several test problems are

reported.
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1 Introduction

The aim of this study is to present first and second order

positive numerical methods for the advection equation

∂c

∂t
+∇ · (uc) = 0 (1)

where c = c(x, t) with c ∈ IR, x ∈ Ω ⊂ IR3 and t ∈ IR+,

∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3); u(x) ∈ IR3 is supposed to be

given. This is a time-dependent partial differential equa-

tion in three spatial dimensions (3D) used in the applied

sciences to describe several problems of great interest,

see, for instance, the recent book by LeVeque [10]. Dif-

ferent methods have been developed in order to solve (1)

numerically. Together with computational efficiency, an-

other important property that should be possessed by an
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advection scheme is preservation of positivity, to avoid

instabilities in the numerical solution. As point out by

Liu and Lax [11], in the modern numerical treatment of

conservation laws, the positivity is a key requirement.

According to the second Godunov’s barrier, second or-

der numerical methods are not positive. We consider two

different classes of schemes for linear advection equation,

the first one based on direct discretization and another

based on method of lines (MOL).

This study is devoted to describe the development of sec-

ond order direct discretization implemented with flux lim-

iter functions. These methods are at least second order

accurate on smooth solutions and yet give well resolved,

non-oscillatory discontinuities. We have here an epitome

of modern numerical analysis: in order to be able to solve

accurately a linear hyperbolic problem we have to apply

nonlinear schemes involving the limiter functions. Several

specific numerical tests are reported in order to show the

behaviour of the considered direct discretization meth-

ods. A preliminary version of this study was presented

at the 2007 WASCOM conference [3].

2 Numerical methods

In this section we consider numerical methods for solving

scalar advection equation in three space dimensions

ct +
3∑
s=1

(usc)xs = 0 (2)

with given initial condition and appropriate boundary

conditions (for instance: Dirichlet conditions at the in-

flow and no conditions at the outflow boundaries, or pe-
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riodic boundary conditions, etc.). Here and in the sequel

the subscripts indicate partial derivatives with respect to

the indicated variables, and the velocity field (u1, u2, u3)

may depend on the independent variables xs. We notice

that in many applications the velocity field can be taken

as divergence-free, that is
∑3
s=1(us)xs

= 0.

Set a uniform Cartesian grid ΩJ ⊆ Ω ⊆ IR3, where J =

(j1, j2, j3)T is a lattice of points in which all js are inte-

gers. The grid points are xJ = (j1∆x1, j2∆x2, j3∆x3)T ,

where ∆xs are fixed step-sizes. Let CJ be an approxima-

tion to the value of the solution c(xJ , t) at current time

t, and C∆t
J an approximation to the value of the solution

c(xJ , t+∆t) at time t+∆t. The velocity js−components,

for s = 1, 2, 3, are centered at the right, back and top face

of the Cartesian cell, respectively, whereas the approxi-

mation CJ are located at its center. This is the so-called

MAC (marker-and-cell) method, see Harlow and Welsh

[5].

Being the governing equation linear, it would be appro-

priate to consider numerical schemes in the linear form

C∆t
J =

∑
K

γJKCJ+K . (3)

Friedrichs [4] proposed to require that the coefficients in

equation (3) should verify the following conditions:

(a) γJK ≥ 0 for each coefficient;

(b)
∑
K γJK = 1;

(c) γJK = 0 except for a finite set of K in a neighbour-

hood of J ;

(d) γJK depends Lipschitz continuously on x.

Conditions (a) and (b) imply that the solution at future

C∆t
J is a convex combination of the values of solution

at current step CJ , and this leads to a local maximum-

minimum principle. That is, the solution C∆t
J is bounded

from above and below by the solution CJ locally. The

condition (c) is a discrete consequence of the finite prop-

agation speed of waves for the advection equation. Under

the reported conditions, Friedrichs has shown that nu-

merical approximations to solution that depend Lipschitz

continuously on the space variables and that have posi-

tive coefficients are bounded under the discrete l2 norm

of the numerical solution, that is, they verify a bounded

growth property:

‖C∆t‖ ≤ (1 +M ∆)‖C‖ (4)

where ‖ · ‖ is the discrete l2 norm defined by

‖C‖ =

[∑
J

(CJ , CJ)

]1/2

,

where C, C∆t are the numerical solution vectors at time

t and t+ ∆t respectively, ∆ = min{∆t,∆x1,∆x2,∆x3},
and the value of the constant M depends on the Lipschitz

constant. This suggests positivity as a design principle

for solving system of conservation laws in more than one

space variables. The schemes (3) verifying the property

(a) are called positive in the sense of Friedrichs.

2.1 1D Advection

We start considering the 1D advection equation

ct + ucx = 0 , (5)

where u is constant. A numerical approximation can be

obtained by considering a direct discretization. In the

case u ≥ 0, for instance, within the finite difference ap-

proach and a five-point stencil, we can consider the α-

scheme defined by

C∆t
j = γ−2Cj−2 + γ−1Cj−1

+ γ0Cj + γ1Cj+1 + γ2Cj+2 , (6)

with coefficients γ, depending on the Courant number

ν = u∆t/∆x, given as follows

γ−2 = −1
2
ν (1− ν)α ,

γ−1 = ν

[
1 +

1
2

(1− ν)(3α− 1)
]
,

γ0 = 1− ν
[
1 +

1
2

(1− ν)(3α− 2)
]
,

γ1 = −1
2
ν(1− ν)(1− α) ,

γ2 = 0 .
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From this scheme we recover some classical second or-

der schemes for particular choices of α: central (Lax–

Wendroff α = 0), Fromm (α = 1/2), and upwind (Beam–

Warming for α = 1). The α-scheme has a local truncation

error given by

1
6
u ∆x2

[
3α− 1− 3α ν + ν2

]
cxxx +O

(
∆t3

)
. (7)

Moreover, the α-scheme is stable for ν ≤ 1 and computes

the advection (exact) solution by setting ν = 1. Note

that, the α-scheme verifies all the conditions listed be-

fore, but the (a), i.e., the positivity condition. This is in

agreement with the second Godunov’s barrier: a linear

positive numerical scheme is at most first order accurate.

The α-scheme can be written in conservation form

C∆t
j = Cj −

∆t
∆x

[
Fj+1/2 − Fj−1/2

]
where F is a numerical flux function, by setting

Fj+1/2 = u

{
Cj +

1
2

(1− ν) [α (Cj − Cj−1)

+(1− α) (Cj+1 − Cj)]} . (8)

This is important because by the Lax-Wendroff theorem

we know that the shock wave velocity is computed cor-

rectly if and only if the scheme is in conservation form.

Now, we describe a different numerical approach: the

method of lines or MOL. The main idea in the MOL ap-

proach is to introduce only a spatial discretization. As an

example, a given five-point discretization formula defines

the semi-discrete system

d

dt
cj(t) =

u

∆x
[δ−2cj−2(t) + δ−1cj−1(t)

+δ0cj + δ1cj+1(t) + δ2cj+2(t)] (9)

where cj(t) ≈ c(xj , t) with xj = j∆x, and the δ coeffi-

cients are given constants. The system (9) can be solved

by an ODE scheme to get a numerical approximation

cnj ≈ c(xj , tn), with tn = n∆t. If we consider the limit

as ∆t goes to zero, for fixed ∆x and tn, then the ap-

proximate solution Cj , at t = tn, of (6) converges to the

solution cj(tn) of (9). Therefore, for ν going to zero, and

fixed ∆x, the direct scheme becomes the MOL scheme

with an exact time integration. In fact, as an example,

when u ≥ 0, from the α-scheme we can derive its associ-

ated MOL semi-discrete system (9) with parameters

δ−2 = −1
2
α , δ−1 = 1 +

1
2

(3α− 1) ,

δ0 = −1− 1
2

(3α− 2) δ1 = −1
2

(1− α) ,

δ2 = 0 .

The MOL approach, that in general is less accurate than

the direct discretization, is usually used to solve numer-

ically more complex models. An example is represented

by time dependent advection–diffusion–reaction (ADR)

models in 3D, used in many applications. Among others

we can quote the applications to the: pollutant transport

in the atmosphere [16], mucilage dynamics [8], ash-fall

from vulcano [12], and groundwater and surface water

[15]. Significant applications solved numerically by MOL

schemes can be found in the work by Verwer et al. [16].

Moreover, adaptive solver based on the MOL approach

have proposed by Blom and co-workers both for 2D [1]

and 3D [2] ADR problems.

2.2 Flux limiters

The considered methods satisfy the positive property, at

first order accuracy, but not at second order accuracy.

First order upwind methods have the advantage of keep-

ing the solution monotonically varying in regions where

the solution should be monotone, even though the accu-

racy is not very good. Second order accurate methods

give much better accuracy on smooth solutions than the

first order upwind method, but fail near discontinuities,

where oscillations may appear due to their dispersive na-

ture. On the other side, the methods implemented with

flux limiters, used in order to suppress spurious oscilla-

tions, perform much better. The idea of flux limiter is to

combine the best features of both methods.

A wide variety of methods of this form has been de-

veloped. In general, a flux-limiter method can be ob-

tained combining any low-order flux formula Fl(Cj−1, Cj)
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(such as the upwind flux) and any higher-order formula

Fh(Cj−1, Cj) (such as the Lax-Wendroff one) to obtain a

flux-limiter method with

Fj−1/2 = Fl(Cj−1, Cj)

+ Φj−1/2[Fh(Cj−1, Cj)− Fl(Cj−1, Cj)] . (10)

If Φj−1/2 = 0, then this reduces to the low-order method,

while when Φj−1/2 = 1, we obtain the higher-order one.

In particular, a hint of how this can be done is seen by

rewriting the Lax-Wendroff flux, obtained by (8) with

α = 0, as

Fj−1/2 = u Cj−1 +
1
2
u

(
1− ∆t

∆x
u

)
∆Cj−1/2 (11)

with ∆Cj−1/2 = Cj−Cj−1. In this way, the flux assumes

the form of the upwind one with a correction term, and

then, the Lax-Wendroff method has the following form

C∆t
j = Cj − u

∆t
∆x

(Cj − Cj−1)

− 1
2
u

∆t
∆x

(∆x− u∆t)(∆Cj+1/2 −∆Cj−1/2) . (12)

Introducing δj−1/2, a limited version of ∆Cj−1/2, we can

rewrite (11) in the following way

Fj−1/2 = u Cj−1 +
1
2
u

(
1− ∆t

∆x
u

)
δj−1/2 . (13)

We obtain the flux limiter methods by choosing

δj−1/2 = φ(θj−1/2)∆Cj−1/2 , (14)

where φ(θ) is the flux-limiter function, whose value de-

pends on of the solution smoothness, with θ =
∆Cj−3/2

∆Cj−1/2
.

Setting φ(θ) ≡ 1 for all θ we obtain the Lax-Wendroff

method, while setting φ(θ) ≡ 0 the upwind one. More

generally, we might want to devise a limiter function φ

that has values near 1 for θ ≈ 1, but that reduces (or per-

haps increases) the slope where the data is not smooth.

A reasonably large class of flux-limiter has been stud-

ied by Sweby [13], who derived algebraic conditions on

limiter function which guarantee second order accuracy

and positivity. For a more recent discussion on this topic

see the paper [9] by LeVeque or his book [10]. In the

following, we list the functions φ(θ) for some numerical

methods.

Linear Methods:

upwind φ(θ) = 0

Lax-Wendroff φ(θ) = 1

Beam-Warming φ(θ) = θ

Fromm φ(θ) = 1
2 (1 + θ)

High-resolution Limiters:

superbee φ(θ) = max(0,min(1, 2θ),min(2, θ))

van Leer φ(θ) =
θ + |θ|
1 + |θ|

minmod φ(θ) = minmod(1, θ) ,

where the minmod(·, ·) function of two arguments is de-

fined by

minmod(a, b) =


a if ab > 0 and |a| < |b|
b if ab > 0 and |b| < |a|
0 if ab < 0 .

In the following we report the numerical results related

to a simple test problem.

2.3 Test problem

Let us consider the problem

ct + ucx = 0 ,

c(x, 0) =

{
1 if 0 ≤ x ≤ 0.2

0 otherwise
(15)

c(0, t) = c(1, t) ,

where 0 ≤ x ≤ 1, u = 1 and t ≥ 0. The initial datum

is a unitary square wave; at the left boundary we im-

pose periodic boundary conditions in order to have the

possibility to consider long time integrations. To pro-

vide a strict comparison of the obtained numerical re-

sults, we choose not to show the computed surfaces that

approximate c(x, t), but to provide a frame comparison

at the fixed time t = 0.5. Figure 1 provides such a com-

parison. For the upwind method we get a dumped ap-

proximation when ν < 1, whereas if ν > 1 we obtain
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CjCj

CjCj

CjCj

Figure 1: Square initial condition: numerical solutions at t = 0.5 with 100 mesh-cells and ν = .9. Top-left: upwind.

Top-right: Lax-Wendroff. Middle-left: Fromm. Middle-right: Beam-Warming. Bottom-left: Lax-Wendroff with

MinMod limiter. Bottom-right: Lax-Wendroff with Superbee limiter.

oscillations, for instance when ν = 1.05, the numerical

solution has, approximatively, the range [−1000, 1000] in

contrast with the exact solution that verifies the condi-

tions 0 ≤ c(x, t) ≤ 1. This is the mark of numerical

instability.
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2.4 Multi-D peculiarities.

One of the simplest way to deal with advection prob-

lems, in 2D or 3D, is to apply a MOL approach. In

this approach the 1D formula can be used as it is in

any of the Cartesian directions, with or without limiting.

To people coming from an ODE background, this kind

of semi-discretization seems to give simple and effective

schemes, which in the case of advection-diffusion-reaction

models, can be easily complemented by diffusion and re-

action terms. Moreover, when the conversion from PDE

to ODE system is done, we have at our fingertips a good

deal of numerical methods of different accuracy and sta-

bility properties. However, this kind of approach has its

drawbacks. As a first step, it is necessary to write the 2D

(worse in 3D) problem as a single system of ODE and the

multi-D structure with initial and boundary conditions

has to be rendered by a single vector. Then, we have to

take into account the stability of the ODE system. Accu-

rate solution can be computed by using higher order spa-

tial discretization formulas with limiting. The interested

reader can find full details on this topic in the research

paper by Hundsdorfer et al. [6] where the positivity of the

so called k-schemes and a fourth order central scheme are

investigated or Hundsdorfer and Trompert [7] where the

comparison of two related third order MOL and dimen-

sional splitting (from a fully discrete one-dimensional)

methods are described. However, these authors point

out that the full discrete method is more efficient and

reliable than the MOL method, so that in the following

we consider a full discrete method (without dimensional

splitting).

In order to derive the higher order scheme in 2D, we start

considering the first order upwind method obtained by a

direct discretization. In the case u1 ≥ 0 and u2 ≥ 0, for

instance, within the finite difference approach, we can

consider the scheme defined by

C∆t
jh = γ−1,0Cj−1h + γ0,0Cjh + γ0,−1Cjh−1 (16)

with coefficients γ, depending on Courant numbers ν1 =

u1∆t/∆x1 and ν2 = u2∆t/∆x2, given as follows

γ−1,0 = ν1 , γ0,0 = 1− ν1 − ν2 , γ0,−1 = ν2 .

In conservative form, the numerical method in 2D can be

written as follows

C∆t
jh = Cjh −

∆t
∆x1

[
Fj+1/2h − Fj−1/2h

]
− ∆t

∆x2

[
Gjh+1/2 −Gjh−1/2

]
(17)

where F and G are numerical flux functions defined at

the cell edges. This method is often called donor-cell up-

wind (DCU) method. In this method we assume that

the only contribution to each flux is coming from the

adjacent cell on the upwind side (the donor cell) and the

numerical flux approximates the amount of concentration

flowing normal to the corresponding cell edge. It is clear

that the new value C∆t
jh is computed using only the values

Cjh, Cj−1h and Cjh−1. This is correct only in the special

cases when u1 = 0 or u2 = 0. In the general case, when

the velocity field, at some times, may be at an angle to

the grid, it is clear that also the value of Cj−1h−1 should

be involved to define C∆t
jh . Then, in order to evaluate the

contribution to fluxes by corner transport, we have to

consider the transverse propagation due to mixed deriva-

tive terms in the Taylor formula:

c (x1, x2, t+ ∆t) = c (x1, x2, t)− u1∆tcx1

− u2∆tcx2 +
1
2

(∆t)2
[
u2

1cx1x1 + u1u2cx1x2

+u2u1cx2x1 + u2
2cx2x2

]
+ . . . (18)

where all time derivative have replaced by spatial deriva-

tive and all derivatives are evaluated at (x1, x2, t
n). In

this way we obtain the following method of first order

accuracy in 2D, the so called corner transport upwind

(CTU),

C∆t
jh = Cjh − ν1 (Cjh − Cj−1h)− ν2 (Cjh − Cjh−1) +

+
1
2
ν1ν2 [(Cjh − Cjh−1)− (Cj−1h − Cj−1h−1)

+ (Cjh − Cj−1h)− (Cjh−1 − Cj−1h−1)] , (19)
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which can be written also in the following form

C∆t
jh = γ−1,−1Cj−1h−1 + γ−1,0Cj−1h

+ γ0,0Cjh + γ0,−1Cjh−1 (20)

with coefficients γ given as follows

γ−1,−1 = ν1ν2 , γ−1,0 = ν1 − ν1ν2 ,

γ0,0 = 1− ν1 − ν2 + ν1ν2 , γ0,−1 = ν2 − ν1ν2 .

As far as the derivation of higher order scheme is con-

cerned, we have to consider also the higher order deriva-

tive terms in (18). By using second order central finite

difference approximation, we obtain the following second

order Lax–Wendroff method

C∆t
jh = Cjh − ν1 (Cjh − Cj−1h)− ν2 (Cjh − Cjh−1) +

+
1
2
ν1ν2 [Cjh − Cjh−1 − (Cj−1h − Cj−1h−1)

+ Cjh − Cj−1h − (Cjh−1 − Cj−1h−1)

+
ν1

ν2
(Cj−2h − 2Cj−1h + Cjh)

+
ν2

ν1
(Cjh−2 − 2Cjh−1 + Cjh)

]
, (21)

that can be written in the form (3). Note that similar

formulae can be derived when the components of the ve-

locity field have a different sign from the ones considered

above.

2.5 Stability analysis

As well known the von Neumann analysis can be used to

determine the stability of numerical methods in the case

of linear equations with constant coefficients. Moreover,

any limiting approach introduce in a given numerical

method a nonlinearity and therefore we have to consider

only methods without limiters. In the analysis we con-

sider a Fourier decomposition and consequently it would

be sufficient to consider a single arbitrary component

Cjh = ei(ξj∆x1+ηh∆x2) ,

where i is the imaginary unit, and ξ and η are the x1 and

x2 wave-numbers, respectively. We define

C∆t
jh = λ(∆x1,∆x2,∆t)Cjh

where λ(·) can be interpreted as an amplification factor.

A given method is stable if substituting these formulas in

the method we find out λ ≤ 1 for all ξ and η.

The DCU method (17) has an amplification factor given

by

λ = 1− ν1 − ν2 + ν1e
−iξ∆x1 + ν2e

−iη∆x2

By using the Euler identity e±iθ = cos θ ± i sin θ, we can

verify that in this case stability on condition is given by

∆t
∆x1

|u1|+
∆t

∆x2
|u2| ≤ 1 . (22)

For the CTU method (19) we have

λ = 1− ν1

(
1− e−iξ∆x1

)
− ν2

(
1− e−iη∆x2

)
+

1
2
ν1ν2

[(
1− e−iη∆x2

)
− e−iξ∆x1

(
1− e−iη∆x2

)
+e−iξ∆x1 − e−iη∆x2

(
1− e−iξ∆x1

)]
=

[
1− ν1

(
1− e−iξ∆x1

)]
·
[
1− ν2

(
1− e−iη∆x2

)]
so that for the stability of the method we get

max
(

∆t
∆x1

|u1| ,
∆t

∆x2
|u2|
)
≤ 1 . (23)

It is a simple matter to verify that the previous condi-

tion represents the stability one for the second order Lax

Wendroff method (21). Note that the condition (23) is

less restrictive than (22).

2.6 Test problems

Let us consider the test problem

ct + u1cx1 + u2cx2 = 0 ,

c(x1, x2, 0) =

{
1 if

√
(x1 + 0.2)2 + (x2 + 0.2)2 ≤ 0.1

0 otherwise

c(0, x2, t) = c(1, x2, t) , (24)

c(x1, 0, t) = c(x1, 1, t) ,

where 0 ≤ x1, x2 ≤ 1, u1 = u2 = 1 and t ≥ 0. The initial

datum is a unitary cylinder with radius 0.1, centered at

(0.2, 0.2); at the boundaries we impose periodic bound-

ary conditions. We report the numerical results obtained

with direct discretization numerical methods of first and
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Figure 2: Advection equation with 100 × 100 spatial grid, ν1 = ν2 = 0.95 and final time tmax = 0.6. Top left: first

order DTU method; top right: first order CTU method; bottom Left: second order Lax-Wendroff method without

limiter; bottom right: second order Lax-Wendroff method with van Leer limiter.

second order accuracy, with and without flux limiter in

Figure 2. By considering the different behaviour of the

methods and limiters used, we have found that the best

results are obtained by the second order method with van

Leer limiter.

The second order Lax-Wendroff method, with van Leer

limiter, has been used for solving the following test prob-

lem

ct + (u1 c)x1 + (u2 c)x2 = 0
(25)

c(x1, x2, 0) = tanh
(
−1

2
x2

)

with −4 ≤ x1, x2 ≤ 4 and t ≥ 0 and where the velocity

field is given by

u1(x1, x2) = −ω(r) x2 , u2(x1, x2) = ω(r) x1 ,

r =
√
x2

1 + x2
2 , (26)

ω(r) =
V (r)
r Vmax

, V (r) =
tanh(r)
cosh2(r)

.

Here V (r) represents the tangential velocity around the

center of the domain, and Vmax is its maximum value.

Figure 3 shows the velocity on a 25 × 25 grid, with this

number of cells it is possible to grasp the structure of the

velocity field. Far from the center the velocity is smaller

compared to its vicinity, and at the center the velocity is

zero. This problem provides a simple model describing

the mixing of cold and hot air, due to the rotational ve-
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Figure 3: Velocity field for problem (25)-(26) with Vmax = 0.385.

locity field, which is similar to the cyclonic air motion at

low pressure systems observed on the weather maps.

As far as the boundary conditions are concerned, we

used the zero extrapolation ones instead of the avail-

able exact values. In Figure 4, we plot a top view of

the numerical solution, at final time tmax = 4 on a

160 × 160 spatial grid, for Vmax = 0.385. For this test

we fixed a Courant number equal to 0.9. Two sam-

ple animations of the numerical solution, obtained on

a 80 × 80 spatial grid, are available on the web page

http://mat520.unime.it/fazio/Mixing.html

Problem (25)-(26) was used by Tamamidis and Assanis

[14] and by Hundsdorfer and Trompert [7] to evaluate the

performance of different numerical methods. In fact, for

this problem it is possible to carry on convergence tests

since its exact solution is known:

c(x1, x2, t) = tanh
(

1
2
x1 sin(ω(r)t)

− 1
2
x2 cos(ω(r)t)

)
. (27)

To study the convergence of the method, we calculated

the numerical solution on successively refined spatial

grids, with ∆x1 = ∆x2, using 40× 40, 80× 80, 160× 160

grid-cells and a variable time step in order to ensure a

Courant number equal to 0.9. We define the root-mean-

squared (RMS) error in two-dimensional space

ERMS =
√

1
JH

∑
j

∑
h

E2
jh

where Ejh = |c(x1j , x2h, tmax)−Cjh| is the relative error

with x1j = −4 + (j + 0.5)∆x1 for j = 0, 1, 2, . . . , J and

x2h = −4 + (h+ 0.5)∆x2 for h = 0, 1, 2, . . . ,H .

The corresponding RMS errors are shown in table 1,
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Figure 4: Sample numerical solution for problem (25)-(26). Top: top view; bottom: side view.

where we also report the convergence order. Note the in-

fluence of the refined grid on the reduction of the RMS er-

ror, that decreases for decreasing values of ∆xi, (i = 1, 2),

with fixed Courant number.
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Table 1: RMS error and order results.

Grid refinement ∆x1 ERMS Order

40× 40 0.2 0.0299

1.8490
80× 80 0.1 0.0083

2.2876
160× 160 0.05 0.0017
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