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Abstract—The non-iterative numerical solution of

nonlinear boundary value problems is a subject of

great interest. This paper is concerned with the the-

ory of non-iterative transformation methods. These

methods are defined within group invariance theory.

We prove the equivalence between two non-iterative

transformation methods defined by the scaling group

and the spiral group, respectively.
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1 Introduction

The non-iterative numerical solution of nonlinear bound-
ary value problems (BVPs) is an outstanding subject in
current research. In this context transformation methods
(TMs) are founded on the group invariance theory, see
Bluman and Cole [6], Dresner [8], or Bluman and Kumei
[7]. These methods are initial value methods because
they transform BVPs to initial value problems (IVPs).

The first application of a non-iterative TM, without any
consideration of group theory, was given by Töpfer in [28]
for the numerical solution of the celebrated Blasius prob-
lem in boundary layer theory. This result is quoted in
several books on fluid dynamics, see, for instance, Gold-
stein [16, pp. 135-136]. Acrivos, Shah and Petersen [1]
first and Klamkin [18] later extended Töpfer’s method to
a more general problem and to a class of problems, re-
spectively. Along the lines of the work of Klamkin, for
a given problem Na [20, 21] showed the relation between
the invariance properties, with respect to a linear group
of transformation: the scaling group, and the applicabil-
ity of a non-iterative TM. Moreover, Na considered the
invariance with respect to a nonlinear group of transfor-
mations: the spiral group. A review paper on this topic
was written by Klamkin [19].

The invariance of one and of two or more physical pa-
rameters, if they are involved in the mathematical model,
were respectively proposed by Na [22] and by Scott, Rin-
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schler and Na [25]. A survey book written by Na [23,
Chs 7-9], on the numerical solution of BVP, devoted three
chapters to numerical TMs.

Here we consider two-point BVPs and we prove that two
apparently different TMs, defined by the spiral group and
the scaling group, respectively, are indeed equivalent. It
is worth mentioning that the quoted example due to Na
[20] — see Na and Tang [24], Klamkin [19], Ames [2,
p. 140], Ames and Ibragimov [4], Na [23, pp. 155-158],
Seshadri and Na [26, pp. 157-168] or Ames [3] — belongs
to the characterized class of problems.

This paper is organized as follows. The next section is
aimed at establishing the mentioned equivalence from a
theoretical point of view. A preliminary note on this
topic was presented at the international congress on Mod-

ern Group Analysis: Advanced Analytical and Computa-

tional Methods in Mathematical Physics [11]. In section
3 we verify the equivalence, by using a specific test prob-
lem, from a numerical viewpoint. The last section con-
cerns with concluding remarks pointing out limitations
and possible extensions of the proposed approach.

2 Scaling and spiral equivalence

Let us introduce the class of two-point BVPs
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where A and δ are arbitrary constants, Θ(·, ·) and Φ(·) are
arbitrary functions of their arguments, b > 0, ζ 6= 0 and
B 6= 0. Here the governing differential equation and the
boundary condition at x = 0 are invariant with respect
to the following scaling group of transformations

x∗ = λδx , u∗ = λu , (2)

where λ is the group parameter. The non-iterative nu-
merical solution of (1) can be obtained by the following
steps:
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• finally, the following relations are defined by apply-
ing group properties
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We note that b∗ is defined implicitly, in (3), so that it can
be considered as a root of an unknown function.

Via the simple variable transformation

x = x ; v = ln(u) (4)

the scaling group (2) is transformed to the following spiral
group

x∗ = λδx ; v∗ = v + µ ; µ = ln(λ)

where µ is the group parameter. The problem (1), after
(4), transforms to
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Therefore, u(x) ≥ 0 for every x ∈ (0, b).

It is interesting to note that the example due to Na [20]
(where p = −1, see Na and Tang [24] for p = 0 and p = 1)
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T (1) = 0

is a particular case of (5). To see
this, let us set v = T , x = r,

δ = −1/2,Θ(·, ·) = −
p + 1

r
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Φ(·) = 1, A = 0, b = 1, ζ = 1 and B = 1. Now, by
inverting (4), problem (6) takes the form
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u(1) = 1 .

Therefore, along the lines of the approach outlined above
a non-iterative numerical solution for (6) can be obtained
by solving (7). This will be the topic of the next section.

3 An application on the non-linear heat

generation

According to Na and Tang [24], the dimensionless model
governing the transient distribution in the radial direc-
tion, with heat generation eT , in plane geometry (p =
−1), in a solid cylinder (p = 0) or in a sphere (p = 1) of
radius r with 0 < r < 1 is given by

∂T

∂t
=

1
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∂

∂r

(

rp+1 ∂T
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)

+ qeT (8)

T (r, 0) = 0 (9)

∂T

∂r
(0, t) = 0 (10)

T (1, t) = 0 . (11)

where q is a dimensionless parameter, whereas (9) stands
for the initial temperature of the cylinder (or the sphere),
(10) represents the initial temperature radial gradient,
and (11) defines the surface temperature.

Let us consider the invariance of (8) with respect to the
following spiral group

T ∗ = T + λ , r∗ = eβλr , t∗ = eαλt .

Indeed, after the application of such a group we obtain
that the invariance is attained by imposing that

{

α − 2β = 0
1 + 2β = 0

⇒

{

β = − 1
2

α = −1

As a result the spiral group specializes to

T ∗ = T + λ , r∗ = e−
λ

2 r , t∗ = e−λt . (12)

Due to the fact that the dynamics of heat propaga-
tion in most applications is mainly performed over long
time scale, it is more interesting to study the asymptotic
behavior of the temperature spacial distribution. The
steady state temperature space distribution, is simply ob-
tained by setting the time derivative of temperature T to



zero. As a consequence the considered model is rewritten
as the following ordinary differential model

1
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Obviously (13) is still invariant with regard to the finite
point transformations of the spiral group (12) involving
T and r. Besides, it is easy to see that the boundary
condition (14) is invariant, whereas the other one (15) is
not.

According to what said in the previous section, in order
to prove the equivalence between the spiral group and
the scaling one, it is enough to define a simple change
of variable W = eT . As a consequence the derivatives
transform as follows
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If we replace them in (13)-(15), then we obtain

d2W

dr2
+

p + 1

r

dW

dr
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Insertion of the new variable W in the temperature point
transformation of the spiral group (12), yields the scaling
group

r∗ = µ−1/2r , W ∗ = µW where µ = eλ. (19)

Such a BVP can be solved by defining an auxiliary IVP
(written in starred variables) consisting of the govern-
ing equation (16) and the initial condition on the space
derivative (17). As far as the missing initial condition is
concerned, for the sake of convenience, we set W ∗(0) = 1.
Since we want to find the solution to the original prob-
lem that at r = 1 is W (1) = 1 and that these values are
linked by the point transformation

W ∗(r∗0) = µW (1) , r∗0 = µ−1/2, (20)

it is enough to eliminate the parameter µ from (20) to
obtain the equation

W ∗1/2r∗ − 1 = 0, (21)

whose zero(s) is just the sought value of r∗0 . We have only
to be cautious, both in integrating up to a value of r∗

greater than r∗0 and in finding a range for the parameter
q, so that the equation (21) can have at least one root.
Once the zero is found, it is immediate to deduce the

value of the sought similarity parameter µ from (20) and
the right value for the missing initial condition W (0).

A numerical test, for several values of the parameter q,
has been carried out by means of the MATLAB ODE
integrator ODE45, with the accuracy and adaptivity pa-
rameters defined by default, with the help of the event
locator set at picking those values of the solution where
equation (21) is verified. The ODE45 solver belongs to
the MATLAB ODE suite written by Samphine and Re-
ichelt [27].

The results of such a test are reported in table 1 and the
sought zeros are graphically depicted in figure 1. It was
experienced that for both the cylindric case (p = 0) and
the spherical case (p = 1), by choosing q = 0 (no heat
source), we obtain the constant solution W ∗ = 1 corre-
sponding to the initial condition imposed W ∗(0) = 1. In
this case we have only one zero. By considering values for
q greater than zero we found that for the cylindric case
there is the range 0 < q < 1.99, and for the spherical
case there is the range 0 < q < 3.3, where two distinct
zeros exist, whereas we have two solutions respectively
for q1 ≈ 1.99 and for q2 ≈ 3.3. Furthermore, for values
higher than q1 and q2 no solutions at all exist. This situ-
ation can be easily appreciated by looking at the figure 1.
Finally, it has been shown by Na [23, pp. 165-172] that
only the first solution has a physical meaning in order the
hypothesis of asymptotic analysis to be valid.

Just for the sake of validation of our results, we decided to
prove numerically the equivalence between a spiral group
and a scaling group, by integrating the original problem
(13)-(14), where the final condition (15) was replaced by
the calculated missing initial condition reported in table
1, for several values of the parameter q. The obtained
results are shown in figure 2.

With regard to table 1, it has to be remarked the com-
parison between our values and the ones obtained by Na
and Tang in their paper [24] where they found the so-
lution to the same problem in (13)-(15) by means of a
spiral group. For small values of q, we can observe a dif-
ference of about ±10−4 both for cylindric case and for
spherical case.It is likely that this difference can be due
to the fact that the present values have been obtained
by means of adaptive step integrator, whereas the others
results, nearly for sure, by using a constant step routine.
Unfortunately for values of the parameter q greater than
0.9 (not reported in table 1), the values of the missing
initial condition provided by Na and Tang are clearly in-
correct or misreported. Correctness of our results is also
confirmed by the numerical validation depicted in figure
2.
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Figure 1: Numerical results for the problem (16-18): top p = 0 and bottom p = 1 (dotted lines correspond to the
upper values of q for the existence of solutions).

cylinder sphere
q ln(W (0)) T(0)(Na-Tang) q ln(W (0)) T(0)(Na-Tang)

0.1 0.025577704422179 0.0252 0.1 0.016864300837286 0.0168
0.5 0.138768257096320 0.1380 0.7 0.127512507202391 0.1270
0.9 0.276610074783917 1.3 0.259102236854185
1.3 0.456703715190792 1.9 0.424694208534499
1.7 0.730434831089254 2.0 2.5 0.651628572111586
1.9 0.983251982794000 3.1 1.056357138615421

Table 1: Numerical results. Our numerical results are validated in figure 2.

4 Concluding remarks

The previous sections indicate how two apparently differ-
ent non-iterative TMs are equivalent under a simple vari-

able transformation. The underlying idea of the trans-
formation in point was to solve the transformed problem
instead of the original one, see Fazio [9, 10] for other ap-
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Figure 2: Top for p = 0, bottom for p = 1: solutions to the problem (13)-(15) obtained through the missing initial
condition reported in table 1 for each considered q.

plications of this idea.

In closing, we can outline some further implications com-
ing out from this work. First of all, non-iterative TMs are
ad hoc methods. Their applicability depends upon the
invariance properties of the governing differential equa-
tion and the given boundary conditions. Consequently,
it is easy to realize that non-iterative TMs can not be
extended to every BVP. The introduction of a variable
transformation linking two different invariant groups is a
possible way to extend the applicability of non-iterative
TMs. However, it is a simple matter to show a differ-
ential equation not admitting any group of transforma-
tions, see for instance Hill [17, pp. 81-82] who reported a

classical example due to Bianchi [5, pp. 470-475]. Conse-
quently, it is easy to realize that non-iterative TMs can-
not be extended to every BVPs. On the other hand, a
further extension of the present method is possible if one
or more physical parameters are involved in the mathe-
matical model, see Na [21] and Scott, Rinschler and Na
[25], cf. also Na [23, Chapters 8 and 9]. Moreover, BVPs
governed by the most general second order differential
equation in normal form can be solved iteratively by ex-
tending a scaling group via the introduction of a numer-
ical parameter h so as to recover the original problem as
h → 1, see Fazio [12, 13, 14]. The extension of this it-
erative TM to moving boundary problems governed by
parabolic equations have been considered in [15].
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