
Applied Numerical Mathematics 12 (1993) 485-496 

North-Holland 

485 

APNUM 443 

An implicit difference scheme for a moving 
boundary hyperbolic problem 

Riccardo Fazio 

Depurtment of Mathematics, Unillersity of Messina, Contrada Papardo, Salita Sperone 31, 98166 Sant’Agata, 
Messina, Italy 

David J. Evans 

Department of Computer Studies, Unicersity of Technology, Loughborough LEll 3TU, United Kingdom 

Abstract 

Fazio, R. and D.J. Evans, An implicit difference scheme for a moving boundary hyperbolic problem, Applied 
Numerical Mathematics 12 (1993) 485-496. 

In this paper an implicit difference scheme is defined for a moving boundary hyperbolic problem, which 
describes a shock front propagation in a constant state. We have reformulated the problem to a fixed 
boundary domain where an implicit difference scheme is proposed. As is well known, the equivalent condition 
for the convergence of a consistent scheme is its stability. However, the only reliable methods of stability 
analysis are based on linear theory. Moreover, the pertinent literature provides simple examples where the 
linearization of a nonlinear scheme leads to incorrect stability results. On an experimental basis a discrete 
perturbation stability analysis was then considered. In order to investigate the convergence of the scheme WC 
considered a particular example where an approximate similarity solution is known. In this case, we point out 
the numerical convergence of the scheme. Even more important is that a possible way to assess the numerical 
accuracy when the similarity solution does not exist is suggested. 

1. Formulation and background 

The aim of this paper is to define a convergent difference scheme for a moving boundary 
hyperbolic problem. Moving boundary problems are characterized by an unknown boundary 
that has to be determined as part of the solution. The considered problem describes a shock 
front propagation in a constant state. A preliminary note on this subject has already been 
presented by the authors in [7]. 
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Let us introduce the mathematical formulation of the problem: we would like to find x”(t), 
U(X, t), and e(x, t) {or U(X, I)) such that 

a~ au 
P~+~=o’ P > 0, u = pellq, 

(l.la) 

are satisfied together with the initial .and boundary conditions 

U(X, 0) = 0, e(x, 0) =e,, e, 2 0 (~(x, 0) = &qJ”“], 

U(0, t) = u,tVqt), uo > 0, 6> -1, 

x”(0) = 0, 

dx” 
Pdtuu(xYq, qn - u~(x”(f)> qn = 0, 

(l.lb) 

(l.lc) 

(l.ld) 

(l.le) 

dx” 
-d+x”(t), t>ll- Uu(x”(t), t)n = 0. (l.lf) 

The problem (1.1) is a mathematical model describing the shock front propagation due to a 
time-dependent velocity impact at the end of a thin rod (see Donato [4]). Let us denote by 
u(x,t> the displacement at time t of the particle of the rod with reference position x (i.e., 
x + u(x, t> the position at time t of this particle). Compressive velocity and strain fields are 
defined respectively by u(x, t) = (d/at>u(x, t) and by e(x, t> = (a/ax>u(x, t). In this context, 
(T(x, t) represents the compressive stress. Moreover, p, p, q, e,, uo, and 6 are constants, H(t) 

is the Heaviside step function, x”(t) represents the shock front and the notation [ * JJ indicates a 
jump across it. The case e, = 0 is related to the physical situation of the rod initially at rest. 

Here, the shock front propagation into the known state ahead of the shock-that is given by 
(l.lb)-is due to the time-dependent velocity impact (1.1~). Then, the Rankine-Hugoniot 
conditions (l.le)-(l.lf) relate the speed of the shock and the states behind with each other. As 
is well known, impact problems, the point explosion problem (see Sedov [23] and Taylor [25]), 
and the dam breaking problem (see Grundy and Rottman [ll]> are due to a shock at the initial 
time. We remark again that the state ahead of the shock is known. Hence, the system (l.la) has 
to be hyperbolic at least for 0 <cx <x”(t). 

Wave propagation problems governed by (l.la>, but with different boundary conditions, were 
studied analytically by Frydrychowicz and Singh [lo] and numerically by Fazio [5]. 

The similarity analysis of (1.1) where q = i, 6 = 1, p/p = 1, u. = 1, and e, = 0 is given by 
Dresner [3, pp. 77-871. This particular problem has a physical meaning. It is related to the 
sudden release of a weight, under the effect of gravity, suspended from a thin rod. Henceforth, 
we will refer to this problem as the signalling problem. As far as representative results are 
concerned we can consider 

x”( 1) = ?ffy e(0, t) =E(0)t2/3, e(x”(t), t) =E(yS)t2/3, 

where we found, by numerical means, 77’ = 0.587458, E(O) = 1.026560, and E($) = 0.613523. 
The similarity analysis is extended to the general case by Donato [4]; but only for e, = 0. As 
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reported by Seshadri and Singh [24] rubber and some metals can be characterized by means of 
the constitutive law in (l.la) where 0 < 9 < 1. Let us remark here that exact solutions are 
crucial elements in the proper development of numerical schemes. Moreover, they are, 
sometimes, asymptotics for more complicated solutions after the decay of irrelevant transients 
induced by the initial conditions, see Barenblatt [l]. 

The numerical approach considered herein is useful for problems describing shock propaga- 
tion in a constant or in a non-constant state. The problem (1.1) can also be considered if 
instead of (1.1~) we have the following boundary condition 

e(0, t) = (p-1flo)9~Y4H(~)y 
where co > 0 and y > - 1. Again this model, which describes a time-dependent stress impact, 
can be considered for a thin rod (see Fazio [6] and the references quoted therein). In the class 
mentioned previously another problem of interest is given, for instance, by the gravity-current 
releases studied by Grundy and Rottman [ll]. Problems where contact discontinuities or 
development of shocks are involved need to be treated either by shock-fitting or shock-captur- 
ing methods. In the former case, the positions of the discontinuities are kept as separate 
variables and the solution is computed by standard methods in the other regions of interest (see 
Richtmyer and Morton [20, pp. 308-311, 378-3831 and also Mao [17]). In the latter case some 
dissipative mechanism is involved in order to avoid spurious oscillations (see for instance the 
EN0 scheme defined by Harten and Osher [13] and Harten et al. [14]). 

The main difficulty in solving our moving boundary problem by a difference scheme, defined 
in the original physical domain, arises at the moving boundary. For the problem (1.1) we know 
in advance that the moving boundary is an increasing function of time and therefore it would 
be inadequate to use fixed spaced grids over the whole region of interest. A different way to 
deal with (1.1) is to introduce a transformation of variables whereby fixing the moving 
boundary. Here we follow the second approach. In the next section we reformulate problem 
(1.1) to a fixed boundary domain by a Landau-like transformation [15]. This approach can be 
extended in two or three space dimensions (see Gupta and Kumar [12]). Then, in the same 
section we propose an implicit difference scheme for (1.1) rewritten in the fixed domain. 
The implicit formulation is of practical interest since very large time steps can be used (see 
Section 4). 

In Section 3 we discuss the practical application of the difference scheme introduced and 
point out a variant of the resolution process. 

As stated before we are interested in a convergent scheme. As is well known, the main 
concepts to play a role in the theory of numerical approximation for evolution problems are 
those of consistency, stability, and convergence. For properly posed nonlinear problems the 
equivalence theorem states that for a consistent scheme stability and convergence are equiva- 
lent (see Rosinger [21]). Therefore, the question reduces to prove consistency and stability. 
Here a major difficulty arises. In fact, the most reliable methods to study the stability of a 
difference scheme, namely the von Neumann and the matrix methods, are applicable only to 
linear or linearized schemes. However, both nonlinear instability (Fornberg [9]) and nonlinear 
overstability (Rosinger [22]) have been assessed to show that the linearization of nonlinear 
schemes can lead to incorrect stability results. An alternative approach for the stability analysis 
is the so-called energy method (see Richtmyer and Morton [20, Chapter 61). This approach can 
also be used for nonlinear problems [20, p. 1421, but its applicability to a given difference 
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scheme is not always straightforward. Therefore, in Section 4 we use a discrete perturbation 
stability analysis (Collatz [2, pp. 268-2761 and Noye [18, pp. 124-1291) and we point out the 
numerical convergence ([18, pp. 119-1231 and Fletcher [8, pp. 75-761) of our scheme when it is 
applied to the signalling problem. 

In the final section we indicate a possible way to deal with the numerical accuracy even when 
the problem (1.1) does not admit a similarity solution, namely for 6 # 0 and e, > 0. 

2. 

X 

Fixed boundary formulation and the implicit difference scheme 

The moving boundary can be fixed at X = 1 for all values of t greater than zero if we define 
as follows 

X=X 
x”(t) * (2.1) 

This definition of X is indeterminate at t = 0, but since X E [0, l] for every t > 0 for continuity 
reasons we assume that X E [O, l] also in the limit t = 0. After (2.1) the moving boundary 
problem becomes 

au x dx” au I au 
-- 

Pat -Px”(t) dt ax 
+ - - = 0, 

P(t) ax 
@ = &/q, 

ae X dP ae 1 au 
-_--- + 
at x”(t) dt ax 

---_O, 
-e(t) ax 

(2.2a) 

with initial and boundary conditions 

u(X, 0) = 0, e(X, 0) = e,, 

U(0, t) = u,t”H(t), u,>o, s> -1, 

x”(0) = 0, 

[~(l, t)D = (p-iU+, t>IlUe(l, t)l)1’2Y 

(2.2b) 

(2.2c) 

(2.2d) 

(2.2e) 

dx” Ua(I, qn 

( I 

i/2 - = 
dt pUe(l, a * 

(2.2f) 

In (2.2e)-(2.2f) a more convenient form for the Rankine-Hugoniot conditions has been used. 
We shall discuss later the usefulness of (2.2e)-(2.2f). 

Let us suppose that we are interested in the numerical solution of (2.2) up to a finite time T. 
For instance in the case of a finite rod, we may ask ourselves when will the shock front arrive at 
the end of the rod. We may also be concerned with, in the case of a semi-infinite rod, the time 
needed by the shock front in order to reach a fixed distance. In the domain of interest we 
introduce a network of grid points with spacings AX and At. Let N = l/AX and A4 = 
(T-At)/At, so that i =0,1,2 ,..., N and j=O,1,2 ,..., M. A first-order implicit difference 
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scheme for the problem (2.2) is as follows: at each time step we solve the nonlinear system of 
equations 

‘i,j+ 1 - ui j - i 
‘x’~~~x’i (“i,j+l -“i-l,j+l) 

+ ~((ei,j+l)““- (ei-l,j+l)l’Y) =Oy 

I+ 

ei,j+ 1 - ei j - i 
($+I -q) 

XQ+1 
Cei,j+l -ei-l,j+l) 

+ g(‘i,j+l - ‘i-l,j+l) = ‘3 

(2.3a) 

where 

ei,o = e,, &vi0 = 0, (2.3b) 

uo,j+l = ((j + ‘)A’)“> (2.3~) 

xs, = 0, (2.3d) 

V N,jil = ( - (eO)l'Y)(eN,j+l 

xj+l =x;+At 
+ N,j+l)l’q - (eo)l’q) 1’2 

PceN,j+ 1 - eO> 
I 

7 

(2.3e) 

(2.3f) 

for i = 1,2, . . . , N. Here we approximate u(iAX, jAt> by ZI~,~, e(iAX, jAt> by e,,j, and C = 
At/AX is the Courant number. 

The finite difference scheme (2.3) has the following truncation errors: 

p AX a2(e114) 
--- 

pi;+, 2 ax2 i,j+l’ 

At d2xS 
-- 
2 dt2 j+l’ 

1 AX a2u ---- 
q+ 1 2 ax2 i,j+l’ 

(2.4a) 

(2.4b) 

(2.4~) 
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Therefore, (2.3) is consistent because the truncation errors (2.4) tend to zero as both AX and 
At tend to zero. 

Let us remark here that, by making the appropriate adjustments, the scheme defined above 
will also apply to the case of a shock front propagation in a non-constant state. 

3. The double iterative process and its variant 

Let us now discuss the practical solution of the discrete scheme (2.3). At each time level we 
get from (2.3) a nonlinear system of the following general form 

R(z) = 0. (3.1) 
Here z = (eo,j+i, ~i,~+,, e,,j+,, . . .,u,+~,~+~, eN_l,j+l, e,j+I)T and R can be seen as a function 
of the 2N-dimensional Euclidean space R2N into itself.’ We can appreciate that the condition 
(2.3e) is what is needed in order to obtain a system of 2N equations in 2N unknowns. Likewise, 
the two conditions (2.3d) and (2.3f) can be used to define the moving boundary position. A 
root-finder has to be applied here because (2.3f) defines xT+i implicitly. In fact, the value of 
eN,,+i being a component of the solution of (3.1) depends on the value of x3+,. Therefore, we 
can consider XT+ 1 as a zero of the implicit function 

f(x;+,) =x;+~ -xi” - At 

This means 
time step. 

Here we 
tion of the 

that in order to find the shock front location we use an iterative procedure at each 

suggest to apply the simple secant method because it does not need the computa- 
first derivative of f(a) and its order of convergence is close to that of Newton’s 

method. However, at the first time step j = 0 we have to use two guessed values in order to 
start the secant method. As a result the residual for the function f( *> is of interest in order to 
have a trial for the guessed values. On the other hand as we proceed further in time, i.e. for 
j= 1, 2,..., M, the shock front location xi” and the value given by 

x;+ At P-2) 

can be used as starting values. 
The nonlinear system (3.1) can be solved by the Newton method 

J(z“)Az = -R(zk), W) 

where J is the Jacobian matrix of R with respect to z and AZ = zktl - zk. Provided the initial 
guess z” is close enough to the solution of (3.1) the Newton method converges quadratically 
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(see Ortega and Rheinboldt [19, pp. 310-3131). Now, we have for z” good hints since we can 
use (At)‘1 for j = O-here 1 represents the vector in IW2N with all components equal to 
unity-and the solution at the previous time step for all j = 1,2,. . . , M. (3.3) is a linear system 
with a pentadiagonal matrix. This allows us to apply a direct method (see Mann [16, pp. 
593-5961). 

It is now evident that we have to deal with a double iterative process. For the convergence of 
the shock front location we require the absolute value of the difference between two subse- 
quent iterations to be less than a prefixed tolerance, say TOL. The accepted value may then be 
used in order to check the residual of the equation. In a similar way, if the maximum absolute 
value of the components of the difference of two subsequent iterations is less than, say, TOLL 
we accept the convergence of the Newton method. Again, the accepted values may be used to 
compute the residual in the root mean square (rms) norm for the system (3.1). The two 
residuals introduced so far, along with the numerical values of TOL and TOLL, are then 
indicators of the convergence of the double iterative process. 

A quicker way to solve the problem at hand is to apply the iteration to approximate the 
shock front only at the first time step. This means that the moving boundary position given by 
(3.2) is accepted without iterations after the first time step. 

4. Numerical results 

As a practical application of our difference scheme we considered its application to the 
signalling problem. The same numerical value was used for TOL and TOLL throughout the 
computations, that is lE-06. Some numerical experiments were carried out, by a discrete 
perturbation stability analysis, in order to assess the stability of our scheme. In the classical 
theoretical setting, the analysis has to be restricted to errors introduced in the initial and 
boundary conditions. Moreover, the analysis can be extended to consider also the effect of 
round-off errors. In this case, a discrete error is introduced at arbitrary grid-points and its 
effect on the computation of the solution given by the finite difference scheme is examined. 
This includes for instance, the effect of errors of the same magnitude with the same or 
alternating sign. The stability of the scheme is equivalent to the decay (or at least non-growth) 
of any discrete error as the computation proceeds. It is evident that an exhaustive application 
of the above methodology is quite tedious. Moreover, since our scheme was implicit and 
nonlinear we applied this analysis on an experimental basis. At each experiment we solved the 
signalling problem twice: once without and then with the discrete error. Table 1 lists two 
sample cases related to the value u. 1 = At +p at the fixed boundary t = 0, where p is an error 
for the correct boundary value. As ‘indicated before this means that at the first time step the 
first guess for the Newton method was given by z” = (At +p)l. In Table 1 we limit ourselves to 
verify the effect of the introduced error only on x;, j = 1,2,. . . , M. We have to check also the 
effect on ui,j and ei j for i = 1,2, . . . , N - 1, j = 1,2, . . . , M. Let us remark that in Table 1 we 
have used a value of’p of the same order with respect to u. i. As far as the computation related 
to the first column of Table 1 is concerned the absolute values of the residual for the shock 
front equation and the absolute values of the residual in the root mean square (rms) norm for 
the nonlinear system (3.1) were smaller than 2E-07 and 6E-09 respectively. More numerical 



492 R. Fazio, D.J. Evans /An implicit difference scheme 

Table 1 
x”(t), discrete perturbation stability analysis; C = 40 

t 

0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

AX 

0.005 

0.079121 
0.185556 
0.310991 
0.451206 
0.603632 
0.766543 
0.938704 
1.119184 
1.307259 
1.502345 

0.005 
p=O.l 

0.090570 
0.204961 
0.334694 
0.476552 
0.628965 
0.790952 
0.961764 
1.140759 
1.327369 
1.521086 

0.00125 

0.012461 
0.029225 
0.071071 
0.176294 
0.301131 
0.440681 
0.592328 
0.754389 
0.925674 
1.105282 
1.292505 
1.486771 

0.00125 
p = 0.1 

0.017971 
0.039218 
0.085723 
0.190126 
0.311674 
0.448981 
0.599228 
0.760366 
0.931001 
1.110126 
1.296975 
1.490937 

experiments were performed in order to test the stability of the scheme with respect to discrete 
errors. All the results clearly indicated the stability of the scheme (2.3) for the problem under 
consideration. 

In Appendix A Tables A.l, A.2, and A.3 report the comparison between the numerical 
results and the approximate similarity solution. The same value of the Courant number, namely 
C = 40, was used consistently for four values of the space step. The numerical convergence has 
been made evident by computing the errors in the rms norm. For the reader’s convenience the 
errors in the rms norm related to Tables A.l, A.2, and A.3 have been plotted against the space 
step, on a log by log scale, in Fig. 1. From Fig. 1 it is easily seen that the order of convergence is 

1 .o 1.5 2.0 2.5 3.0 3.5 

-log&W 

Fig. 1. Numerical convergence. 
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O(AX>. Further evidence from Fig. 1 is the following: the numerical accuracy of l%, i.e. 
-log,, (rms error) = 2, has been obtained by the results found with At = 0.05. Higher-order 
schemes are worth considering only if a security problem is concerned, say for instance in the 
design of nuclear reactors. 

The numerical results for x’(t), again for C = 40, obtained by the variant of the double 
iterative process proposed in the previous section are listed in Table A.4. By comparison of the 
errors in the rms norms it is easily seen that the former approach (iteration at all time steps) is 
more accurate than the latter one (iteration only at the first time step). However, the errors in 
the rms norm listed in Table A.4 indicate numerical convergence as well. 

5. Conclusions 

In this section we would like to point out the main evidence from the present work. 
Here we defined an implicit difference scheme for a shock front propagation in a constant 

state. The implicit formulation is of practical interest since very large time steps can be used, 
significantly reducing the computer time needed to solve a specific problem. In particular, the 
time step can be increased, in comparison with standard explicit schemes, by factors of thirty or 
more (see Section 4). The signalling problem of Section 1 may be considered as a benchmark 
problem since we know an approximate similarity solution for it. This particular problem was 
considered in order to test our difference scheme. The stability of the scheme was investigated 
by a discrete stability analysis. Moreover, we verified the convergence of the numerical solution 
to the approximate similarity solution. 

As a first remark, we would like to underline that the fixed boundary formulation allows us 
to follow the shock front propagation accurately. In this context, the present work suggests that 
implicit difference schemes are more suitable than explicit ones for problem (2.2) and similar 
type problems. In fact, (2.2a) and the condition (2.2d) prevent us to consider an explicit 
difference scheme. 

As a further remark the proposed approach can also be applied to problems with a shock 
front propagation in a non-constant state. 

The numerical results listed in Appendix A allow us to make a last remark on their meaning. 
Let us forget here the approximate similarity solution and the related errors in the rms norm. 
We can ask ourselves: is there any way to assess the accuracy inherent in the numerical 
solution? In order to answer this question the following point is of great importance. The 
numerical results of Table A.1 and Table A.4-except at the first time step, obviously-are 
monotonically increasing and decreasing with respect to the space step size respectively. Since 
those of Table A.1 are always greater than those of Table A.4 they approximate from above 
and below the exact shock front location. As a consequence the common decimals in the 
corresponding entries of Tables A. I and A.4 are correct. In other words we have here a numerical 
inclusion for the shock front position. To conclude we have enough evidence to suggest that the 
variant of the double iteration process, namely iterative only at the first time step, is worth 
considering also when a similarity solution for the problem (1.1) does not exist, that is for 6 # 0 
and e, > 0. 
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Appendix A 

Table A.1 
x”(t), iteration for all time steps 

t AX 

0.01 0.005 0.0025 0.00125 

similarity 

0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0.079121 
0.199372 0.185556 

0.310991 
0.467528 0.451206 

0.603632 
0.783526 0.766543 

0.938704 
1.136747 1.119184 

1.307259 
1.520726 1.502345 

0.031399 
0.073642 
0.179079 
0.304239 
0.444204 
0.596281 
0.758755 
0.930420 
1.110377 
1.297919 
1.492478 

0.012461 0.010821 
0.029225 0.027267 
0.071071 0.068709 
0.176294 0.173137 
0.301131 0.297289 
0.440681 0.436278 
0.592328 0.587458 
0.754389 0.749121 
0.925674 0.920056 
1.105282 1.099352 
1.292505 1.286294 
1.486771 1.480301 

rms error 0.034296 0.017044 0.009050 0.004831 

Table A.2 
e(O, t>, iteration for all time steps 

t 

0.05 

AX 

0.01 0.005 0.0025 0.00125 

0.129203 

similarity 

0.139326 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0.325572 
0.516813 0.542985 

0.720715 
0.861909 0.877334 

1.020410 
1.144004 1.153784 

1.279707 
1.392591 1.399640 

1.514596 
1.619688 1.625321 

0.205097 0.215489 0.221166 
0.342065 0.348187 0.351079 
0.552703 0.555478 0.557303 
0.726864 0.728746 0.730273 
0.881750 0.883299 0.884663 
1.023926 1.025308 1.026560 
1.156790 1.158067 1.159236 
1.282399 1.283599 1.284704 
1.402123 1.403262 1.404315 
1.516931 1.518020 1.519029 
1.627543 1.628590 1.629563 

rms error 0.022909 0.010736 0.005032 0.002365 
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Table A.3 
e(x”(t), t), iteration for all time steps 

t 

0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

rms error 

AX 

0.01 

0.248434 

0.449423 

0.624090 

0.779786 

0.921498 

0.069946 

0.005 

0.156512 
0.283213 
0.393346 
0.491508 
0.580841 
0.663502 
0.740981 
0.814331 
0.884305 
0.951460 

0.035916 

0.0025 

0.098589 
0.178443 
0.309718 
0.418101 
0.513137 
0.599540 
0.679835 
0.755506 
0.827497 
0.896456 
0.962846 

0.018081 

0.00125 

0.062107 
0.112425 
0.195138 
0.323301 
0.428324 
0.521355 
0.606629 
0.686266 
0.761525 
0.833239 
0.901991 
0.968220 

0.009140 

similarity 

0.083268 
0.132180 
0.209822 
0.333072 
0.436447 
0.528718 
0.613523 
0.692817 
0.767803 
0.839288 
0.907847 
0.973901 

Table A.4 
x”(t), iteration only at the first time step 

t AX similarity 

0.01 0.005 0.0025 0.00125 

0.05 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0.079121 
0.199372 0.158241 

0.274595 
0.398745 0.409337 

0.557740 
0.691885 0.717375 

0.886706 
1.031351 1.064658 

1.250427 
1.405237 1.443378 

0.031399 
0.062798 
0.162454 
0.284711 
0.422543 
0.572853 
0.733785 
0.904072 
1.082774 
1.269162 
1.462649 

0.012461 0.010821 
0.024921 0.027267 
0.064472 0.068709 
0.167693 0.173137 
0.291216 0.297289 
0.429719 0.436278 
0.580481 0.587458 
0.741769 0.749121 
0.912363 0.920056 
1.091344 1.099352 
1.277992 1.286294 
1.471724 1.480301 

rms error 0.055914 0.029031 0.014168 0.006840 
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