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A moving boundary hyperbolic problem for a stress impact
in a bar of rate-type material
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In this paper we present some results obtained by studying the mathematical model describing a moving boundary hyperbolic
problem related to a time dependent stress impact in a bar of Maxwell-like material. Due to the impact a shock front propagates
with a finite speed. Here our interest is to underline the influence of the dissipative term on the propagation of the shock front.

In the framework of the similarity analysis we are able to reduce the moving boundary hyperbolic problem to a free boundary
value problem for an ordinary differential system. It is then possible, by applying two numerical transformation methods, to
solve the free boundary value problem numerically. The influence of the dissipative term is evident: the free boundary (that
defines the shock front propagation) is an increasing function of the dissipative coefficient.

1. Introduction and formulation

This paper presents a complete similarity analysis of a moving boundary hyperbolic problem. Some
classical moving boundary hyperbolic problems can be studied by means of the similarity analysis. For
instance this is the case of: blast waves due to a point explosion [1, 2], transverse waves in shock-loaded
membrane [3], rainfall-runoff in sloping areas [4], or longitudinal waves propagating along a thin rod due
to a velocity or a stress impact [5].

Recently the mathematical model describing the longitudinal wave propagation induced by a velocity
impact in a thin rod has received a great deal of attention. Analytical investigations on it have been carried
on in [6, 7] whereas numerical results have been obtained in [8, 9]. Moreover, the stress impact problem is
considered in [10].

Here we shall consider a longitudinal shock front propagation determined by a stress impact at one end
of a bar of rate-type material. We take into consideration Maxwell materials described by the following
governing system [11-13]

ov Oc file) ov

Po 5 ox 0, o d(o) o ¥Y(o). (1.1a)
In (1.1a) v is the component of velocity along the axis of the bar, o is the tensile stress, po and x are
respectively the reference density and longitudinal coordinate at reference time =0, whereas ®@(o)=
Doo'’”? and W(o)= W,0'? (®y, W, p and g are constants) are material response functions, see [11]. Let
us remark here that the governing system (1.1a) takes into account nonlinear instantaneous response
and nonlinear viscoplastic response for the considered material. The system (1.1a), provided @(c)>0, is
hyperbolic.

0165-2125/92/%05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved



300 R. Fazio / Impact on rate-type material
As far as the stress impact problem is concerned we have to consider the boundary condition
0(0, 1) = oo’ H(t) (1.1b)

where o, is a reference stress & is a constant and H(-) is the Heaviside step function. We assume that the
boundary condition (1.1b) determines the propagation of a shock front x,(¢) into the bar initially at rest,
1e.,

v(x>x(1), 1)=0, o(x>x(1), 1)=0, x5(0)=0. (1.1¢)

At the shock front we have the well known Rankine-Hugoniot conditions [14]:

dx,
po );E’) [oGe(t), D]+ [0 Gae), ] =0

(1.1d)
25 S0 160, 0D+ [, 9] =0

here the notation [ - ] indicates the jump across the shock front. The relationship between stress and strain
across the shock front is therefore the same as for continuous waves.

A preliminary analysis of the model (1.1) has been worked out in [15]. A similar problem for a velocity
impact in elastic materials is considered in [16-18] from a similarity viewpoint; in [19] an implicit difference

scheme is introduced.
The main concern of this paper is to determine how the disspative term (¥,0'/?) influences the shock

front propagation.

Within the context of similarity analysis we show that it is possible to reduce the moving boundary value
problem to a free boundary value problem. Moreover, we point out that the similarity analysis can be
carried on in order to solve the free boundary value problem numerically [20, 21].

2. Similarity analysis

The following stretching group

v=ptu,  o*=pfo,  xNM)=u"x(), x*=p'x, *=pt 2.1)

leaves the mathematical model (1.1) invariant when ¥, =0 if

16

a=06———, B=2, y=14+-—
2p 2

while for ¥,#0 we have to add the condition

s=—91_
qg—1
Owing to the afore-mentioned invariance we can introduce the similarity variables

—1/2p 3—1/2 1 - —1/2p 4,—1/2 ,1/2 -
n=o0oo /p(po /po/zxt 7’ ns= 0y /p(po /po/ xs(t)t Y

2.2
V(n)=of P77 @ *py*t o(x, 1),  E(m)=05't *o(x, 1) @2
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the use of which permits to reduce the mathematical model (1.1) to the ordinary differential system in
normal form

g_ ayn V—6X— q’oo-(()l_‘I)/qu/q

dn -z
1—- 1 1 (2.3a)
dX _ yn(8Z+ Yool " PXV)—qVE'?
dn Y=z
along with the boundary conditions
p-1 1\ __Zmy
20)=1, E(Us)=<_p— > 2) , V(T]s)——W. (2.3b, ¢, d)

Here (2.3c) and (2.3d) are obtained by the Rankine-Hugoniot conditions. Since 7, is unknown, (2.3)

defines a free boundary value problem.
The main result is the following: if ¥o=0 or g=1 then (2.3a), (2.3c) and (2.3d) result invariant with

respect to the stretching group
V¥*=0¥*"'Vv, X*=0%X, n*=on (2.4)

which does not exist when ¥,#0 and g#1. We conclude that in order to solve numerically the free
boundary value problem (2.3) we can use for the non-dissipative case the non-iterative transformation
method [20], while investigation of the dissipative case requires the use of the iterative transformation
method [21].

3. Numerical methods

In the following we give the general outlines of the numerical solution for the free boundary value
problem (2.3). First we consider the non-dissipative case ¥ =0. From (2.4) we easily find that

o= (Z*(0))"*, n=ow"'n¥, 1(0)=o""?1V*(0). 3.1)

Therefore, it is possible to obtain 7, by a numerical integration backwards in [0, n], where nZ can be
chosen at our convenience. Next, let us consider the dissipative case ¥ #0. In order to apply the iterative
transformation method we have to introduce a numerical parameter A. If we extend the stretching group
(24) by

h*=wh (3.2)
then the differential system (2.3a) has to be modified as follows

AV aynV—6X — Wooll~9/ap 1oy /e
dn N

dX yn(6Z+ Yool ~P/p-Voxgliay_qys'/p
dn NI

(3.3)
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Since (3.2) extends the stretching group (2.4), along with (3.1) we have to use
h=o""h* 3.4)

Here we note that (2.3a) is recovered from (3.3) by setting A= 1. Thus we will find the correct value of n;
if we get A=1 from (3.4). Then, fixed a value of 7, we define A* iteratively by a root finder. Our purpose
is to find a root of the transformation function

C(F*)=[w(h*)] 'h*—1. 3.5)

We remark that o(h*) is an unknown function of #*. Hence, the values of I'(h*) have to be computed by
solving a related initial value problem. At every iteration step we have to integrate (3.3) backwards in
[0, n¥]. Once again n can be chosen at our convenience.

4. Numerical results and discussion

In the present analysis our interest is to point out the role played by the dissipative term, see Section 1.
Let us denote with § the dissipative coefficient

§ =Yool 9.
First, by assuming 3 =0 we obtained the numerical results listed in Table 1 by setting either nS=1 or

n¥=0.5

Table 1

Results related to a nonlinear model (p=3) in
the non-dissipative case 3 =0

8 V(0) s

-0.5 —1.286499 1.07735
0.5 —1.211072 0.66995
1.0 —1.206158 0.571939
1.5 —1.203906 0.500607
2.0 —1.202708 0.44592

The value of p=3 used here is related to a constitutive law between strain and stress where the strain is
proportional to the power two over three of the stress. As reported in [6] a relationship of the type
mentioned before with an exponent greater than zero but smaller than one is used to describe rubbers and
some metals.

Here we notice how it is possible to validate the numerical results by a further integration backwards in
[0, ns]. For instance, in the case 6 =2 we obtain V(0)=—1.202709 and X(0) =1.000001.

Then we considered 3 #0. As well known every iterative numerical procedure needs an appropriate
criterion of convergence. In order to accept a value of ¢ we require

IC(R)|<Tol,  |né—ns~"|<Tol

where Tol is a prescribed tolerance. The Table 2 shows the iterations obtained by means of the secant
method. There we used Tol=1x 107°.

For the reader’s convenience Fig. 1 represents the self-similarity solution for the problem at hand. The
choice p=3 and ¢ =2, results in the viscoplastic strain rate proportional to the stress to the power one over



Table 2

Results obtained for p=3, §=2, ¢g=2, 3=—1and =1
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hi L(h¥) V(0) ns
0 2.000000 —0.15111
1 4.000000 0.431889
2 2.518389 0.29x107" —1.441716 0.408756
3 2.410143 —0.64%x1072  —1.419068 0.412262
4 2.429466 0.73x107™*  —1.423061 0.411643
5 2.429248 0.18x10™®  —1.423015 0.41165
6 2.429248 -0.50x 107" —1.423015 0.41165
4
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Fig. 1. Shock front propagation for p=3, g=2, 6§ =2, i.e. 6(0, f)oct’ and x,(f)oct*?, and 9 =—1.

s
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six; this agrees with some physical experiments showing that the viscoplastic strain rate increases with

increasing stress, see [22].

As discussed before a direct validation in the case $=—1 led to V(0)=—1.423014 and X(0) =0.999999.
Table 3 lists further numerical results; those not shown before were obtained iteratively as discussed above.
In order to discuss the influence of the dissipative term upon the shock front propagation it is convenient
to rewrite here the functional form of the moving boundary

—1/2p 5 —1/2 1/2
x(t) = 05 /* D5 py/*nst”

where y=1+13(8/p); 6=4/(g—1) if 8 #0. Therefore, for a given material the behaviour of the shock
front depends only on 7. The influence of the dissipative term is evident: it turns out that 7 is an increasing
function of §. Since dx,(t)/d¢ represents the shock speed, attenuation effects on shock front propagation

will occur for negative values of §, while they do not occur for positive values of 3.
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Table 3
Results connected with p=3, §=2, ¢g=2 and
n¥=1.
3 ¥(0) ns
-1.0 —1.423015 0.41165
-0.5 —1.316325 0.42825
0.0 —1.202708 0.44592
0.5 —1.08136 0.464515
1.0 —0.951518 0.483819

All computations were performed on a RISC SYSTEM /6000 IBM computer with the DIVPAG inte-
grator in the IMSL MATH/LIBRARY [23]. The DIVPAG allows us to apply step size and local error
control. An user supplied Jacobian and a value of 1- 107" for the error control were used within the
DIVPAG.
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