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Second Order Numerical Operator Splitting 1

for 3D Advection–Diffusion-Reaction Models 2

Riccardo Fazio and Alessandra Jannelli 3

Abstract In this paper, we present a numerical operator splitting for time integra- 4

tion of 3D advection-diffusion-reaction problems. In this approach, three distinct 5

methods of second order accuracy are proposed for solving, separately, each term 6

involved in the model. Numerical results, obtained for advection – reported in [Fazio 7

and Jannelli, IAENG Int. J. Appl. Math., 39, 25–35, 2009] –, diffusion, and reaction 8

terms, show the efficiency of proposed schemes. 9

1 Introduction 10

This paper concerns numerical methods for three dimensional advection–diffusion-

AQ1

11
reaction (ADR) models governed by the following system of equations 12

@c
@t
Cr � .vc/� r � .Drc/ D R.c/ ; (1)

where c D c.x; t/ 2 IRm, x 2 ˝ � IR3 are the space variables and t denotes the 13

time. The diffusion coefficient matrix D D diagŒd11; d22; : : : ; dmm� and the velocity 14

field v.x/ 2 IR3 are, usually, supposed to be given. Several phenomena of relevant 15

interest can be described by model (1). Among others, we can quote the applications 16

to a chemotaxis model [8], the pollutant transport in atmosphere [11], mucilage 17

dynamics [4], ash-fall from volcano [5], and groundwater and surface water [9]. 18

The governing system takes into account physical and biological processes mod- 19

elled by three distinct terms: transport of each component due to the velocity field 20

v, described by the advection terms; random motion of each component due to the 21

turbulent nature of the flow field, modelled by the (turbulent) diffusion terms; inter- 22

action of the involved species described by reaction terms (e.g., chemical reactions, 23
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growth of species, consumption of nutrients, etc.). From the numerical view-point, 24

for the time integration of different terms of the model (1), we propose a fractional 25

step approach. This method consists in separating in the discretized equations the 26

part that accounts for hydrodynamics, described by advection term, usually linear, 27

and the diffusion term on the left hand side, from the part accounting for biology, 28

described by nonlinear reaction term on the right hand side. This splitting is reason- 29

able when a loose coupling exists between the different phenomena and when they 30

evolve with different characteristic times. The coupling between the components 31

in each grid point, and not over the grid points, appears only in the solution of the 32

reaction equations. In this contest such assumptions holds and the use of a fractional 33

step seems promising. 34

2 The Operator Splitting Approach 35

In this section, we describe an efficient algorithm for solving ADR models (1) 36

written in the following form 37

@c
@t
D A.c/CD.c/CR.c/: (2)

We propose the use the Strang splitting [7] approach: if cn is the approximate solu- 38

tion at time tn, we obtain the solution cnC1 at next time tnC1 D tn C 
t by the 39

following sequence of five steps: 40

cnC1 D A .
t=2/D.
t=2/R.
t/D.
t=2/A .
t=2/ cn;

where A .�/, D.�/ and R.�/ represent the discretized advection, diffusion and reac- 41

tion operators, respectively. The advantage of the fractional step method is that, for 42

each term, a different time integration method can be chosen. For the time inte- 43

gration of the advection part, explicit methods are usually more efficient than the 44

implicit ones. On the other hand, the reaction part is sometimes very stiff and this 45

requires the use of implicit methods, used also for the diffusion term. As far as accu- 46

racy is concerned, by using this splitting technique we get second order accuracy 47

provided that each subproblem is solved by a second order accurate method. 48

2.1 Advection Solver 49

In this section, we consider the homogeneous hyperbolic equations 50

@c
@t
Cr � .vc/ D 0; (3)
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with given initial condition and appropriate boundary conditions (for instance: 51

Dirichlet conditions at the inflow and no conditions at the outflow boundaries, or 52

periodic boundary conditions, etc.). We set an uniform Cartesian grid ˝J 2 IR3. 53

Let cn
ijk

be the average value of c over cell .xi ; yj ; zk/ at current time tn, and cnC1
ijk

54

the average value of c at time tnC
t . For time integration, we use a high-resolution 55

finite volume method written in the conservative form 56

cnC1
ijk
D cnijk C

�
t

x

h
Fn
iC 1

2
jk
� Fn

i� 1
2
jk

i
� 
t


y

h
Gn

ijC 1
2
k
�Gn

ij�1
2
k

i
� 
t

z

h
Hn

ijkC 1
2

�Hn

ijk� 1
2

i

where F, G and H are intercell numerical fluxes. A recent study on first and second 57

order positive numerical methods for the advection equation is developed in [1] 58

where several test problems are solved. 59

2.2 Diffusion Solver 60

The diffusion term is discretized implicitly to avoid using small time steps when are 61

not dictated by accuracy reasons in detecting the correct dynamics of the concen- 62

tration. We use the Crank–Nicolson scheme because it is second order accurate in 63

space and time, 64

cnC1
i;j;k
� 
t

2
x
y
z
wnC1
i;j;k
D cni;j;k C


t

2
x
y
z
wni;j;k (4)

where 65

wni;j;k D �
n

y
z


bFn
iC 12 ;j;k

�bFn
i�12 ;j;k

�

(5)

C
x
z

bGn

i;jC1
2
;k
� bGn

i;j�1
2
;k

�
C
x
y


bHn

i;j;kC1
2

� bHn

i;j;k�1
2

�o

with 66

bFiC 12 ;j;k D �diC 12 ;j;k
ciC1;j;k � ci;j;k


x
;

bGi;jC12 ;k D �di;jC12 ;k
ci;jC1;k � ci;j;k


y
; (6)

bHi;j;kC1
2
D �di;j;kC1

2

ci;j;kC1 � ci;j;k

z

:

As far as stability is concerned, the Crank–Nicolson scheme is an unconditionally 67

stable one. We have no restriction on the time step but the extra labour involved is 68
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Fig. 1 Example of matrix of coefficients for the Crank–Nicolson method

very considerable. We have to solve a system of linear equations. These equations 69

have a regular structure, each involving at most seven unknowns. The matrix of 70

the system consists of zeroes, but it has not tridiagonal form. The linear system 71

obtained is solved by the bi-conjugate gradient method of Van der Vorst [10] (for a 72

simple description of the method see [2, pp. 362–379]). Figure 1 shows the matrix 73

of coefficients on a sample domain of 5�5�3 mesh-points. Note that there could be 74

some instability in coupling with the reaction term. The presence of diffusion term 75

in the system may cause some instabilities. When we individually test each step 76

in the Strang splitting procedure, they are stable for reasonable time step intervals. 77

When we test the coupled diffusion and reaction steps they could be unstable. When 78

the full model is solved numerically, the time step interval necessary to prevent 79

instability is very small when the diffusion term is discretized with Crank–Nicolson. 80

A much longer time step is possible when diffusion step is discretized with the TR- 81

BDF2, as Tyson et al. have done in [8], here TR stands for Trapezoidal Rule and 82

BDF2 for the second order Backward Difference Formula. 83

2.2.1 Test Problem: Heat Equation 84

As an example, we consider the heat equation 85

@c

@t
D @2c

@x2
C @2c

@y2
(7)
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Fig. 2 The numerical solution and at time t D 0:001, t D 0:003, t D 0:005, and final time
t D 0:01

on the unit square 0 < x < 1, 0 < y < 1, with homogeneous Dirichlet boundary 86

conditions c D 0 on the boundary of the unit square. The initial condition is 87

c.x; y; 0/ D f .x; y/ with f .x; y/ D 1 within the region shaped like the letter 88

H, and f .x; y/ D 0 in the rest of the square. In a narrow band surrounding the H, 89

the function increases from 0 to 1, so that f .x; y/ is continuous; its derivatives are 90

not continuous, being zero everywhere outside the narrow band and being greater 91

than zero inside the band. The results of the implicit method are shown in Fig. 2. 92

It shows the way in which the initial function diffuses throughout the square. This 93

numerical results are obtained using 
x D 
y D 0:01 and 
t D 0:001 with 94

tmax D 0:01. 95

2.3 Reaction Solver 96

The reaction step consists of solving a coupled system of ordinary differential equa- 97

tions in each grid cell. There are no spatial derivatives and hence no spatial coupling 98

of different cells in this step. Moreover, the reaction equations are sometimes very 99

stiff, requiring the use of implicit methods for stability reasons. In this contest, we 100

propose the use of an adaptive procedure implemented with stiff solvers at low accu- 101

racy and complexity. In particular, we use the Milne device for the estimation of the 102

local error, that is the error incurred in the integration from tn to tnC1 under the 103
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assumption that the approximate solution at time tn is exact. In order to imple- 104

ment the Milne device, we use two different convergent multistep methods of same 105

order of accuracy p in order to decide whether the numerical value is an acceptable 106

approximation to exact solution evaluated at time tnC1. Let us denote by cnC1 and 107

Qc nC1 the two computed numerical approximations, and with C and eC the corre- 108

sponding local error constants. A naive approach is to require that the local error LE 109

satisfies 110

LE D
ˇ̌
ˇ̌ C

eC � C
ˇ̌
ˇ̌ jjcnC1 � Qc nC1jj � tol; (8)

with jj � jj a suitable norm. 111

2.3.1 Numerical Results: Robertson Problem 112

As sample numerical test, we consider the problem given by a stiff system of three 113

non-linear differential equations with suitable initial conditions 114

8̂
<̂
ˆ̂:

c01 D �P1c1 C P3c2c3
c02 D P1c1 � P3c2c3 � P2c22
c03 D P2c22
c1.0/ D 1, c2.0/ D 0, c3.0/ D 0;

(9)

where P1 D 0:04, P2 D 3 � 107 and P3 D 104. The model describes the kinetics 115

of an auto-catalytic reaction described by Robertson [6]. The structure of reaction is 116

reported in (10), where A, B and C represent the chemical species involved 117

A
P1! B;

B C B P2! C C B; (10)

B C C P3! AC C:
This problem is sometimes used as a test problem for stiff solvers. The large dif- 118

ference among the reaction rate constants Pi , with i D 1; 2; 3, is the reason for the 119

stiffness. As usual in problems arising in chemical kinetics, this system has a small 120

very quick initial transient. This phase is following by a very smooth variation of the 121

components where a large step-size would be appropriate for a numerical method. 122

The problem (9) is integrated within the range t 2 Œ0; 106�. Figure 3 shows the 123

numerical solution of the species involved. 124

The numerical results are obtained in 267 steps (with 3 rejected steps) by Milne 125

device implemented with the TR with eC D �1=12, and BDF2 with variable time 126

steps, see [3], with 127

C D � .kn C 1/2
6kn.2kn C 1/ ;

where kn D 
tn=
tn�1. Figure 4 shows the adaptive numerical results. In the top 128

frame, we show the step-size selection 
tn, in the bottom one the local error LE. 129
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Fig. 3 Semi-log scale plot of numerical solution for the Robertson problem

0 2 4 6 8 10
x 105

0

5000

10000

t

Δt
n

0 2 4 6 8 10
x 105

0

0.5

1
x 10−4

t

LE

Fig. 4 Adaptive numerical results for the Robertson problem
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It is easy to note, how, the adaptive procedure modifies the time step in relation to 130

the value of the the local error for the solution second component. Initially, at the 131

beginning of the process, the adaptive procedure sets a small 
tn corresponding 132

to fast transitory of the second component. Then, when this component becomes 133

smooth, the procedure amplifies the step-size. A maximum value for step-size is set 134

and this represents its upper bound. 135

For the adaptive procedure, we set: 
tmin � 
tn � 
tmax with 
tmin D 10�6 136

and
tmax D 104, LEmin � LE � LEmax with LEmin D 10�5 and LEmax D 10 LEmin. 137

The time-step 
tn is modified in the following cases: if LEmin � LE � LEmax , 138

then 
tnC1 D 0:9 
tn .tol=LE/1=.pC1/, p D 2 in our case; if LE < LEmin then 139


tnC1 D 1:2 
tn; if LE > LEmax then the step is repeated with 
tn D 0:5 
tn. 140
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