THE FALKNER-SKAN EQUATION: NUMERICAL SOLUTIONS
WITHIN GROUP INVARIANCE THEORY (})

Riccarpo Fazio (?)

ABsTRACT - The iterative transformation method, defined within the framework of the
group invariance theory, is applied to the numerical solution of the Falkner-
Skan equation with relevant boundary conditions. In this problem a boundary
condition at infinity is imposed which is not suitable for a numerical use. In
order to overcome this difficulty we introduce a free boundary formulation of
the problem, and we define the iterative transformation method that reduces
the free boundary formulation to a sequence of initial value problems. Moreov-
er, as far as the value of the wall shear stress is concerned we propose a numer-
ical test of convergence. The usefulness of our approach is illustrated by con-
sidering the wall shear stress for the classical Homann and Hiemenz flows. In
the Homann’s case we apply the proposed numerical test of convergence, and
meaningful numerical results are listed. Moreover, for both cases we compare
our results with those reported in literature.

AMS Subject Classification: Primary: 65L10. Secondary: 34B15, 76D10.
Key Words: Numerical solution, group invariance theory, Falkner-Skan equation.

1. Introduction and formulation

Group invariance theory (also known as Lie group theory) is widely used in
numerical analysis. In this context we can quote the classical perturbation theory
developed by Grébner [26, pp. 336-343] for the numerical solution of initial value
problems (IVPs), the transformation of boundary value problems (BVPs) to
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IVPs [21, Chapters 7-9], and the classification of finite difference schemes for
partial differential equations according to the invariance properties of their first
differential approximation [25]. The transformation of BVPs to IVPs has both
analytical and numerical interest: from an analytical viewpoint, existence and
uniqueness theorems can be obtained [13]; whereas from a numerical one, non-
iterative methods can be defined [14-15]. A classical example is given by the
Blasius problem of boundary layer theory for which existence and uniqueness
were reported in [19, pp. 104-105] and a non-iterative solution was obtained in
[27]. These results are a consequence of the invariance of the Blasius equation
with respect to a scaling (stretching) group of transformations. Numerical
methods introduced on the basis of the invariance properties have been named in
several ways: «initial value method» [20], «exact shooting» [1], «method of trans-
formation» [21], «inspectional and infinitesimal group methods» [24, Chapter 9]
or «a transformation method» [7]. In the following we will use «numerical trans-
formation methods» in order to indicate methods defined within group invariance
theory.

In order to define the problem we shall deal with, let us consider the model
describing the flow of a fluid past a wedge [6]

ﬂ+f‘_i_2£+ﬁ[1—(d_f>2]=o

dn? dn?
(1.1) 1 7 dn
df df
f0)=—(0)=0 —(m)—>lasn— o
dn dn

where 1 and f are similarity variables and § is a parameter. The governing dif-
ferential equation is the classical Falkner-Skan equation. (1.1) generalizes the
Blasius problem which is recovered when f = 0. For each value of the physical

parameter f involved in (1.1), Weyl [28] proved that there exists a solution for
2

. dif . ..
which o (n) is positive, monotone decreasing on [0,%), and approaching zero

as n — ®,
The uniqueness question is more complex [4] because when g > 1, besides the
monotone solution characterized by Weyl, there exists a hierarchy of solutions
with reversed flow. This hierarchy of solutions was studied numerically in [5].
We remark that the problem (1.1) was proposed as a caveat for numerical trans-
formation methods [21, pp. 146-147].

Here, by following the idea introduced in [9] for the Blasius problem, we
consider the free boundary formulation of (1.1) given by
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dgfe 2 2
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dn® dn? d
(1.2) n n n
df, df, d
f£0)=—Z0)=0 —~(n)=1 —(n)=c¢
dn dn dn?

where 0 < £ < 1 and 7, is the unknown free boundary. If we fix a value of ¢, then
7, and f.(n) defined on [0, 7] are sought as solution of (1.2). Moreover, it might
be possible to prove the convergence of the solution of (1.2) to the solution of (1.1)
as € — 0 when suitable smoothness conditions for the solution of the free BVP
(1.2) hold. Work in this direction is now in progress. In sections 2 and 3 we limit
ourselves to propose and to apply a practical numerical test of convergence.

In the next section we define an iterative transformation method by reducing
(1.2) to a sequence of IVPs. The method is a variant of that proposed in [8] for
the numerical solution of free BVPs governed by a system of two ordinary dif-
ferential equations. In section 3 we list meaningful numerical results obtained

with our approach for the Homann flow (8 = 1/2) and the Hiemenz flow (8 = 1).
d2
The value of the wall shear stress — (0) is considered for comparative purpose.

The last z~c*ion contains some final remarks devoted to point out the link of the
present study with other works in current literature.

2. Group invariance theory and numerical convergence

The governing differential equation in (1.2) is invariant with respect to a
simple translation in the independent variable. That is not enough in order to
define a numerical transformation method. However, let us introduce the family
of problems

% + f, &’ + ﬁ[h”? - (fi_f_)z] =0
dp*  dp?

(2.1)

L0 =0 =0 Sy =1 gy

=g
dn dp

where h is a parameter. The governing differential equation and the two bound-
ary conditions at n = 0 in (2.1) are invariant with respect to the stretching group

n*=A"'n £*=1f; h*=2h
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As a consequence, a transformation method can be defined. To this end we have
to assume that for a suitable range of h* the IVP

3c % 20 % *\2
U [ ()]

dn*? dn*? dn*
22 " n
df.* 2¢ %
f*(0) = (0) = 0; d'te (0) = const
dn* d'l*2

defined on [0, n.*], where n.* is fixed by the condition

de.* 32 g2 e d2f;
[ - (m*)] ; (M) =< —(n) =g
dn dn* dn?

is well posed. By means of standard group analysis we obtain

dt 1/2 df.
1= |2 | Ly =1

dn* ]

d*; _3 d’f*

©0) =2 (g)
dn dn*
ne = An*
d2fe _ d2f€*

© () = A7 S (n%)
dn dn
h = 478 h*,

The solution of the original problem is recovered when h = 1. In other words, in
order to solve the problem (1.2), we have to find a root of the implicit function

r(h*) = [A(h*)]"°h* — 1

where A is considered as a function of h* because this is the only parameter to be
varied. By choosing the values of h*j, h*; and computing the corresponding
values I'(h*y), I'(h*,) we can apply a root-finding method in order to define a
sequence h*,, k = 2, 3, ... | . Hence, we have an iterative method which general-
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izes the non-iterative method introduced in [9]. A numerical algorithm can be
easily defined by following the approach described above.

As far as the convergence question is concerned we would like to indicate
here a practical numerical test. If the two problems (1.1) and (1.2) are well-posed
(the latter for values of £ in a suitable interval of € = 0) we would have that as ¢ —
0 then 5. — ® and f,() — f(n) on [0, 7.]. Let us consider a sequence of values g (i
=1,..,n)suchthat0 < g;; < g (=1,..,n— 1) and solve the problem (1.2)
for each value of £ in the sequence. As a first test we can verify if n.,, > 1., ( = 1,
..., n — 1). Moreover, since we are solving our problem by means of an initial
value method, the error related to the value of the wall shear stress is of relevant
interest in determining the global error. Consequently, we can define the re-

: d*f, d’f; : o
siduals rj as | —* (0) — 7 20| =1.,n- 1) and verify ifrj 4 <1 (k =
n
1, ..., n — 2). An application of the above idea is given in the next section.

3. Numerical results

Let us consider first the Homann flow, corresponding to the value g = 1/2.
In Table 1 a simple iteration for this case is reported.

Table 1 — Sample numerical iterations for the Homann flow.

d2f* _
Here —*_ (0) = 0.1D + 02 and £ < 107°.
dn*?
2
k h*, r(h*) ne A
dn
0 565 —0.824761 129. 354.113 0.483441
1 570 0.354772D—1 1.764 3.891470  0.931440
2 569.793794 0.332237D—1 1.5855 3.490251  0.937408
3 566.753667 —0.250849D—2 1.806 3.990510  0.926975
4 566.967092 0.311817D—-3 1.774 3.918604 0.927826
5 566.943495 0.699223D—5 1.777 3.925360 0.927735
6 566.942954 0.595237D—6 1.777 3.925363  0.927733
7 566.942904 0.410447D—8 1.777 3.925363 0.927733
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Here and in the following the D notation indicates a double precision arithmetic.
From Table 1 it is evident that the value of 9.* is not constant in all the iterations.
That may represent a difficulty in using the method because 7.* defines the inter-
val of integration. In the present work we started with the value € = 0.1 in order
to study the behaviour of I'(h*). Thus, by letting the value of £ get smaller (¢ — 0
is of interest) we can use our information about the behaviour of I'(h*) at the
previous step in order to speed up the preliminary computations. Meaningful
numerical results, obtained as described above, are listed in Table 2.

Table 2 — A convergence numerical test for the Homann flow.

2
e< h I(h*) ne* e % o)
dn2
107! 542.670752 0.13D-8 1.009 2.216707 0.943081
1072 565.733143 0.27D—-8 1.442 3.184503 0.928476
1073 566.942904 0.40D-—8 1.777 3.925363 0.927733
1074 537.022195 0.39D—-9 2.06 4.550585 0.9276b4
1072 567.027843 0.47D—-8 2.302 5.085175 0.927680
1076 567.028301 0.15D-8 2.522 5.571160 0.927680

It is evident that 7, is a decreasing function of . Moreover, the results for the wall
shear stress reported in Table 2 clearly indicate numerical convergence. A direct
validation of our results is proposed in Table 3. The results listed in Table 3

were obtained by solving the IVP (2.2) in the 7 and f(n) variables (and h* = 1)
2

on [0, n.] with the values Ofd—f; (0) and 7, as reported in Table 2.

dn
As far as the Hiemenz flow (8 = 1) is concerned, representative numerical
2¢ %
results are listed in Table 4 for the case d f£2 (0) = 0.1D + 02 and £ < 107°.
dn*

The same Table also proposes a comparison between our results and those re-
ported in literature. Our results define the truncated boundary that is approx-
imately required in order to achieve six decimal places of accuracy for the value of
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Table 3 — Numerical validation for the results listed in Table 2.

2 2

% o) e o Lewm

dn? dny dn?
0.943081 2.216707 1. 0.999270D—1
0.928476 3.184503 1. 0.998599D—2
0.927733 3.925363 1. 0.998994D -3
0.927684 4.550585 1. 0.975419D—4
0.927680 5.085175 1. 0.942535D—5
0.927680 5.571160 1. 0.892296D—6
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Table 4 — Comparison of the wall shear stress and truncated boundary (nw or ne) for the
Homann and the Hiemenz flows.

this work
initial value method

Nasr et al. [22]
Chebyshev method

Beckett [2]

finite difference
method

2 2 2
8 " o) o) e 0
dn dn dn
0.5 3.7 0.927805 5. 0.9277
0.5 5.085175 0.927680 7.4 0.927680
1. 3.5 1.232617 5. 1.2327
1. 5.187600 1.232588 7. 1.232588

the wall shear stress. A reduction of the numerical accuracy or an increase of the

computational cost are related to a smaller or to a greater value of the truncated
boundary.

For all the experiments reported above we used a RISC System/6000 IBM

computer with the DIVPAG integrator in the IMSL Math/Library [12].
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Moreover, we provided a user supplied Jacobian, the value 1D-12 for the local
error control and the secant method along with appropriate termination criteria.

4. Concluding remarks

The Falkner-Skan equation of boundary layer theory is of relevant interest in
fluid dynamics. The classical problem for this equation is given by a two-point
BVP with one of the boundary conditions specified at infinity. Such a boundary
condition is not suitable for a direct numerical treatment, and some approaches
have been proposed in order to overcome this difficulty.

A simple strategy, reported in [3, 10], is to impose the same boundary condi-
tion at a finite boundary (the truncated boundary). In a more complex approach
a preliminary asymptotic analysis is carried on in order to define the most suit-
able boundary conditions to be imposed at a finite boundary. The latter approach
has been developed in detail by several authors [11, 16-18]. However, as indi-
cated in [16], an «a priori» evaluation of a convenient truncated boundary is
difficult to obtain.

Here we proposed a free boundary formulation where the truncated bound-
ary is unknowu, and has to be found as part of the numerical solution. Moreover,
under suitable smoothness conditions it might be possible to prove that the solu-
tion of the free boundary formulation represents an approximation of the solution
of the original problem. That can also be theoretically relevant in applying the
simple truncated boundary approach mentioned above. In literature such a proof
is for instance available for the Blasius problem in [23], it was obtained by taking
into account the invariance of the governing equation with respect to a stretching
group. We have already remarked that the Falkner-Skan equation does not result
to be invariant with respect to any stretching group, so that a direct generaliza-
tion of the analysis worked out in [23] is not possible. However, since we solve
our problem by an initial value method we propose a numerical test of converg-
ence for the missing boundary condition at the origin (i.e., the wall shear stress).
In this context the results of Table 2 are the most significant among those re-
ported in this paper.
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