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The Blasius problem formulated
as a free boundary value problem
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Summary. In the present paper we point out that the correct way to solve the Blasius problem by numerical
means is to reformulate it as a free boundary value problem. In the new formulation the truncated boundary
(instead of infinity) is the unknown free boundary and it has to be determined as part of the numerical
solution. Taking into account the “partial” in§variance of the mathematical model at hand with respect to
a stretching group we define a non-iterative transformation method. Further, we compare the improved
numerical results, obtained by the method in point, with analytical and numerical ones. Moreover, the
numerical results confirm that the question of accuracy depends on the value of the free boundary. Therefore,
this indicates that boundary value problems with a boundary condition at infinity should be numerically
reformulated as free boundary value problems.

1 Introduction and formulation

This paper is concerned with the numerical solution of the classical problem in the boundary
layer theory
d*f d*f
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where # and f(#) are similarity variables and & = 1/2 or « = 1. Blasius [1] obtained this problem
in the study of a laminar boundary layer along a thin flat plate. The foundations of the boundary
layer theory were established by Prandtl [2]. Oleinik [3] and Nickel [4] proved, respectively,
existence and uniqueness for the original partial differential problem.

Analytic approximation to the solution of (1.1) can be obtained by series or asymptotic
expansions. On the other hand we can resort to numerical methods. The first to provide
a numerical solution was Topfer [5]. He discovered a transformation that allowed him to solve
the boundary value problem by solving two related initial value problems. It was 50 years later
that Klamkin [6] recovered that transformation as a consequence of the “partial” invariance of
the problem — the boundary condition at infinity being not invariant — under a stretching group.

As generally occurs the initial interest was to obtain the qualitative behaviour of the solution
of (1.1). But in recent years people became more interested in the improvement of the analytic or

numerical accuracy, see Parlange, Braddock and Sander [7]. Usually, in order to obtain an idea of
2

the accuracy involved, the value of e (0) (the wall shear stress) is quoted. That value is of
n

physical interest since it defines the skin friction around the plate.
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Solving problem (1.1), as far as a numerical point of view is concerned, we have to deal with
a practically unsuited condition at infinity. A typical procedure to overcome this point, see for
instance Fox [8], is to apply that condition at several finite points and observe the change in the
solution. More appropriately, a numerical procedure can be stated as follows: the condition

df d

d‘—/ (o0) = 1 is replaced by d_f (n.,,) = 1 where 5, is chosen large enough in order that the second
i n

derivative is practically zero and any further integration does not change its value. Therefore,

usually without mention, the numerical solution is carried out in a guess and trial framework.

However, the correct problem to be solved numerically is the following one:

d, a’f,

i + af, in’ 0

(12)

N
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where the subscript ¢ indicates that the solution depends on its value, #, is unknown and
0 < ¢ < 1 defines the value of 55,. Thus (1.2) is a free boundary formulation of the Blasius problem.
The fundamental aim of the present work is to make evident that, from a numerical point of view,
(1.2) is the correct way to formulate the Blasius problem. As a secondary purpose our numerical
study shows that the degree of accuracy in the numerical solution depends on the value of #,.

In the above formulation we assume, implicitly, that as ¢ — 0 then #, > o0 and f, — f. Indeed,
as shown by Rubel [9], the described procedure yields an approximation of the real solution.
Moreover, Rubel provides an estimation of the error due to the truncated boundary. There the
value of f,(n,) is of interest since it defines the accuracy of f,(#) in [0, n,] according to Rubel’s
formula

i) — £, < f(";)s; 0<n=n,. (13)

Finally the paper of Rubel defines an a priori criterion to choose the value of 17, (7, in (1.3)) in
order to achieve the required accuracy. However, the specialized literature seems to neglect
Rubel’s work. As a consequence there is no agreement in the literature about the value of 4.
Here we remark that the error considered in Rubel’s work is due to the truncated boundary; no
consideration is devoted to the error introduced by the numerical integration.

In the next Section we describe a non-iterative numerical method. The idea behind the
present method is to consider the “partial” invariance of (1.2) — in the sense that the two
boundary conditions at #, are not invariant — with respect to a stretching group, see Fazio [10].
However, this method is different from Topfer’s classical one because here the free boundary
1, has to be determined as part of the solution whereas there the far boundary #,, is a priori
chosen. Non-iterative and iterative transformation methods for free boundary value problems
have been introduced in Fazio and Evans [11] and in Fazio [12], [13].

In Section 3 we indicate how our results agree with analytical and numerical ones, also we
provide an improvement in the numerical accuracy.

Finally, in the last Section, we discuss the evidences provided by the present work.
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2 A non-iterative transformation method

In(1.2) the governing differential equation and the two boundary conditions at zero are invariant
with respect to the action of the stretching group

n*=2"'n;  fX=1, 2.1)

where A is the exponential of the group parameter. This means that solutions of (1.2) with

d? d

d{e ), n,, ;ff (n,) and ¢ are transformed under (2.1) one into another.
n n

The idea expressed in the last sentence leads to a non-iterative transformation method. Let us set

21 %
e

different values of

a value of y (0) and integrate numerically forwards in [0, #,*]. To this end we can use any

n*?
suitable initial value integrator for ordinary differential equations. Then from (2.1), taking into

d
account the condition d—fe (n,) = 1, we have
n

I A
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fene) = A7 fX(n,*)

_, dPfx
dn*?

(n.*).

=/

At this stage the value of the end point #,* is unknown, so we set a prefixed tolerance, say t, and
the values given by (2.2) become accepted when the condition ¢ < 7 is achieved. Therefore the
results can be compared for different values of t, for instance, T = 0.1D — 05,7 =0.1D — 08 and

so on. It is important to note that the value of ¢ has to be greater than the zero machine. Here it is

24 %
&

dn*?
reducing the error introduced by the numerical integration if the condition n.* < n,, or at least
n.* <, is satisfied.

In the next Section we present the numerical results calculated by the described
method.

worth noting that we have the freedom to choose the value of (0), which may help in

3 Numerical results

The practical application of the non-iterative transformation method of Section 2 requires the
solution of an initial value problem. Any initial value solver can be used in principle, but as far as
the question of accuracy is concerned, a numerical integrator with step size and error control has
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to be applied. Hence, we performed all the numerical integrations by using the initial value solver
DIVPAG of the IMSL MATH/LIBRARY [14], with supplied Jacobian, on a RISC
SYSTEM/6000 IBM computer. The tolerance we used for the error control, within the DIVPAG

integrator, was 0.1D — 14. In order to reduce the round-off error, according to the remark made

24 %
£

dn*?
obtained for a« = 1/2 are listed in Table 1.
2

Once the values of —; (0) and 5, have been calculated we can integrate forwards in [0, 77,] in
2

in Section 2, we used (0) = 0.1D + 04, which implies that n,* < 1. The numerical results

- ~ (1,). In this way we can validate the
n

numerical results as shown in Table 1. A general discussion about the validation of numerical

d
order to check the numerical values d—fg (n,) and
n

computations can be found in Rice [15].

¥

Table 1. Numerical results and their validation for « = 1/2, here p :2 (0) =0.1D + 04
n
d2
T € n* 1, Sfny) el ()
an*
0.1D — 05 0.999962D — 06  0.606 103 8.752700 7.031914 0.332057
0.1D —08 0.1D —08 0.727116 10.500242233 8.779454979 0.332057336
01D —11 01D —11 0.827755 11.953564643860 10.237771215862  0.332057336215
d’f, df, d’f,
—2 (0 i ¢ (,,F
i (0) n, in (n,) e )
0.332057 8.752700 0.999 999050905 0.999974D — 06
0.332057336 10.500242233 0.999999 999 346 0.1D — 08
0.332057336215 11.953 564 643860 0.999999 999999 0.1D — 11
In Table 2 the numerical results are given for o = 1.

20%
Table 2. Numerical results and their validation for « = 1, again y :2 (0)=0.1D + 04

n

d2
T € n* 1, f.(n) a7 (0)
dn?

01D —11 01D —11 0.660701 8.500 195503235 7.283415048997 0.469 599988 361

A3 df d*f

& 0 _E JE
o © n, 2 1 2 (10
0.469599988361  8.500195503235 1. 0.1D — 11
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4 Discussion

The results obtained for the first case in Table 1, where t = 0.1D — 05, agree with Howarth’s [16]
d*f

classical ones, i.e., 1, = 8.4 and e (0) = 0.33206. Here we notice that the best estimates of
2 n

d
;g (0) previously available, 0.332057 34 (obtained by the Topfer method) and 0.332057 35 (given
n

by a revised analytical technique due to Bairstow [17]) and given in Parlange et al. [7], agree with
the value listed for the case t = 0.1D — 08. However, Parlange et al. considered 7, = 10. Further,
the case T = 0.1D — 11 gives improved values that we believe to be correct up to the twelfth
decimal place. In the latter case, from (1.3), we get

lf)—fi(m £12-1071%;, 0<ny<n,

where 5, = 11.953564....
The results listed in Table 2 can be compared to those of Nasr, Hassanien and El-Hawary [18]

dz
where 1, = 6.9 and d—{ (0) = 0.469 6000 obtained by a Chebyshev expansion or to those of
n

dz
Quartapelle and Rebay [19] in which #, =7 and d_{ (0) = 046959999 and calculated by
}’I e]

2
a numerical method that makes use of the integral condition J e (1) dn = 1. Once again we
n

0
believe that the value of the wall shear stress given in Table 2 is correct up to the twelfth decimal

place. Again from (1.3) we obtain

f(n)—fiml < --1071% 0<n<n,

A V)

where #, = 8.500195....

The Blasius problem has been considered and solved in this paper. We now consider further
applications of our non-iterative transformation method. The method is applicable to
a quasi-steady form of the Blasius problem, see Duck [20], where the condition at infinity is

df
— (00) =1+ pcos(t)
dn

with u of O(1). t represents the time. Moreover, the introduction of the new independent
variable £, given in (4.1), proposed by Schultz-Grunow, see Schlichting [21], allows us to reduce
several problems in the boundary layer theory, involving self-similar solution, to the Blasius
problem:

1
&= 74 In (1 + 24y). 4.1)

The transformation (4.1) can be used for flows along longitudinally curved walls with blunt or
sharp leading edges by choosing 4 = RA4/2 as the curvature parameter. Here A represents the
boundary-layer thickness and R the Reynolds number.
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Formally, the non-iterative transformation method introduced so far can be used in order to
solve any problem in the class

df, 1-36 af, d’f,
_JE ) -3 , o—1 _8’ 26—1  J&
in’ Je f7n S, in J; in?
4.2)
df, df, d’f,
0)=—(0)=0, —(n)=C; ) =€
£:(0) dr/() dn(ﬂ) dnz(n)
where 0 is a constant different from zero, @ (-, -, -) is an arbitrary function of its arguments,

C is a given constant, and ¢ < 1 as before. Here we have to consider the partial invariance of
(4.2) with respect to

nk =2y, f*=2f. 4.3)

From (4.3), we have

df* 1/(1-9)
A= [-fL (ng*)]

dn*
de8 B dzfa*
2 (0)= 2271 ==L (0)
dn dn
M, =2"%n* 4.4

fin) = 275 (n,*)

A
g=)%"1 W (1,%)

instead of (2.2).

d2
Of course, by setting ® = —af,>°"! 512",
n

problem (1.2), moreover (4.3) and (4.4) reduce to (2.1) and (2.2) respectively.

The numerical results listed in Table 1 show that the accuracy inherent in the numerical
solution depends on the value of ¢. This means that if we are trying to solve problem (1.1)
by a guess and trial procedure the numerical accuracy depends on the value of the far
boundary 5. Therefore, as a main conclusion we can say that the present study indicates
that all problems with a boundary condition at infinity should be formulated as free
boundary value problems before any effective attempt to obtain a numerical solution is
made.

C=1 and 6 = —1 we recover from (4.2) the
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