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a b s t r a c t

Blasius problem is the simplest nonlinear boundary-layer problem. We hope that any
approach developed for this epitome can be extended to more difficult hydrodynamics
problems. With this motivation we review the so called Töpfer transformation, which
allows us to find a non-iterative numerical solution of the Blasius problem by solving a
related initial value problem and applying a scaling transformation. The applicability of a
non-iterative transformation method to the Blasius problem is a consequence of its partial
invariance with respect to a scaling group. Several problems in boundary-layer theory lack
this kind of invariance and cannot be solved by non-iterative transformation methods. To
overcome this drawback, we can modify the problem under study by introducing a numer-
ical parameter, and require the invariance of the modified problem with respect to an
extended scaling group involving this parameter. Then we apply initial value methods to
the most recent developments involving variants and extensions of the Blasius problem.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

At the beginning of the last century Prandtl [34] put the foundations of boundary-layer theory providing the basis for the
unification of two, at that time seemingly incompatible, sciences: namely, theoretical hydrodynamics and hydraulics. Bound-
ary-layer theory has found its main application in calculating the skin-friction drag which acts on a body as it is moved
through a fluid: for example the drag of an airplane wing, of a turbine blade, or a complete ship [36]. With the turning of
this new century, as the number of applications of microelectronics devices increases, boundary-layer theory has found a
renewal of interest within the study of gas and liquid flows at the micro-scale regime [12,31].

Blasius problem is the simplest nonlinear boundary-layer problem. Recent publications on the Blasius problem are those
by Yu and Chen [43], He [24,25], Liao [29], Lin [30], Boyd [5], Belhachmi et al. [3], Wang [41], Allan and Syam [2], Cortell [9],
and Fang et al. [14]. In particular, a study by Boyd pointed out how this particular problem of boundary-layer theory has
arose the interest of prominent scientist, like H. Weyl, J. von Neumann, M. Van Dyke, etc., see Table 1 in [5]. The main reason
for this interest is due to the hope that any approach developed for this epitome can be extended to more difficult hydro-
dynamics problems. Last year, at the centenary of Blasius paper [4], further studies were developed by Brighi et al. [7] or
Boyd [6].

Our main goal here is to show how to solve numerically the Blasius problem, and its variants and extensions, by initial
value methods derived within scaling invariance theory. The Blasius equation and the two boundary conditions at the plate
are invariant with respect to the scaling transformation
f � ¼ k�af ; g� ¼ kag;
where a is a non-zero parameter. This scaling invariance has both analytical and numerical interest. From a numerical view-
point, as we will see shortly, a non-iterative transformation method (ITM) was defined by Töpfer [39] by transforming the
. All rights reserved.
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boundary conditions to initial conditions. Owing to that transformation, a simple existence and uniqueness theorem was gi-
ven by J. Serrin as reported by Meyer [32, pp. 104–105]. Let us note here that the mentioned invariance property is essential
also to the error analysis, of the truncated boundary formulation of the Blasius problem, developed by Rubel [35]. Further-
more, it is possible to prove that the unique solution of the Blasius problem has a positive second order derivative, which is
monotone decreasing on ½0;1Þ and approaches to zero as g goes to infinity (see Weyl [42]).

Here, we will consider two problems of interest in boundary-layer theory: the flow on a moving surface and slip boundary
condition. In both cases the scaling invariance of the prescribed initial conditions will be lost and we have to apply exten-
sions of Töpfer algorithm.

Preliminary results on the topic of this paper were presented at the World Congress on Engineering held in London (July
2–4, 2008) [22].

2. Fluid flow on a flat plate

The model describing the steady plane flow of a fluid past a thin plate, provided the boundary-layer assumptions are ver-
ified (the flow has a very thin layer attached to the plate and v � w), is given by
@v
@y
þ @w
@z
¼ 0;

v @v
@y
þw

@v
@z
¼ m

@2v
@z2 ;

vðy;0Þ ¼ wðy; 0Þ ¼ 0;
vðy; zÞ ! V1 as z!1;

ð1Þ
where the governing differential equations, namely conservation of mass and momentum, are the steady-state 2D Navier–
Stokes equations under the boundary-layer approximations, v and w are the velocity components of the fluid in the y and z
direction, V1 represents the main-stream velocity, see the draft in Fig. 1, and m is the viscosity of the fluid. The boundary
conditions at z ¼ 0 are based on the assumption that neither slip nor mass transfer are permitted at the plate whereas
the remaining boundary condition means that the velocity v tends to the main-stream velocity V1 asymptotically.

In order to study this problem it is convenient to introduce a potential (stream function) wðy; zÞ defined by
v ¼ @w
@z

; w ¼ � @w
@y

:

The physical motivation for introducing this function is that constant w lines are steam-lines. The mathematical motiva-
tion for introducing such a new variable is that the equation of continuity is satisfied identically, and we have to deal only
with the transformed momentum equation. In fact, introducing the stream function the problem can be rewritten as
follows
m
@3w
@z3 þ

@w
@y

@2w
@z2 �

@w
@z

@2w
@y@z

¼ 0;

@w
@y
ðy;0Þ ¼ @w

@z
ðy;0Þ ¼ 0;

@w
@z
ðy; zÞ ! V1 as z!1:

ð2Þ
Fig. 1. Boundary layer over a thin plate.
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2.1. Blasius problem

Blasius [4] used the following similarity transformation
g ¼ z
V1
my

� �1=2

; f ðgÞ ¼ wðy; zÞðmyV1Þ
�1=2

;

that reduces the partial differential model (2) to
d3f
dg3 þ

1
2

f
d2f
dg2 ¼ 0

f ð0Þ ¼ df
dg
ð0Þ ¼ 0;

df
dg
ðgÞ ! 1 as g!1

ð3Þ
i.e., a boundary value problem (BVP) defined on a semi-infinite interval. Blasius solved this BVP by patching a power series to
an asymptotic approximation at some finite value of g.

2.2. Töpfer transformation

By considering the derivation of the series expansion solution of the Blasius problem, Töpfer [39] defined a transforma-
tion of variables that reduces the Blasius problem into an initial value problem (IVP). However, it is much simpler to consider
directly the scaling transformation
f � ¼ k�1=3f ; g� ¼ k1=3g; ð4Þ
and to define a non-iterative transformation method. We notice that the governing differential equation and the initial con-
ditions at the plate in (3) are left invariant by the new variables defined in (4). Moreover, Töpfer used the missed initial
condition
d2f �

dg�2
ð0Þ ¼ 1:
Under (4) the first and second order derivatives transform in the following way
df �

dg�
¼ k�2=3 df

dg
;

d2f �

dg�2
¼ k�1 d2f

dg2 ;
and the value of k can be found on condition that we have an approximation for df �

dg� ð1Þ. In fact, by the above relations we get
k ¼ d2f
dg2 ð0Þ ¼

df �

dg�
ð1Þ

� ��3=2

: ð5Þ
Let us list the steps necessary to solve the Blasius problem by the considered approach, we have to:

1. Solve the IVP
d3f�
dg�3

þ 1
2

f �
d2f �

dg�2
¼ 0;

f �ð0Þ ¼ df �

dg�
ð0Þ ¼ 0;

d2f �

dg�2
ð0Þ ¼ 1

ð6Þ
and, in particular, get an approximation for df �

dg� ð1Þ;
2. Compute k by Eq. (5);

3. Obtain f ðgÞ, and its derivatives, by the inverse transformation of (4).

In this way, we have defined an initial value method for the Blasius problem. In literature such a method is also known as
a non-ITM.

2.3. Truncated boundary approximation

From a numerical point of view the request to get df �

dg� ð1Þ is not a simple one. Several strategies have been proposed in
order to provide an approximation of this value. Töpfer solved the IVP for the Blasius equation once. At large but finite
g�j , ordered so that g�j < g�jþ1, he computed, by Eq. (5), the corresponding kj. The main idea is simple: if two subsequent values
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Fig. 2. Blasius solution by a non-ITM.
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of kj agree within a specified accuracy, then k is approximately equal to the common value of the kj, otherwise, march to a
larger value of g and try again.

In a more general setting, the simplest and widely used numerical approach to boundary value problems defined on infi-
nite domains is to introduce a suitable truncated boundary g1 instead of infinity. The error analysis of the truncated bound-
ary solution for the Blasius problem is due to Rubel [35], see also [20]. The question on how to set a satisfactory value of g1 is
not addressed in this work. A recent successful way to deal with such a question is to reformulate the considered problem as
a free BVP [15–17]. For instance, as far as the Blasius problem is concerned, we can replace the asymptotic condition with the
free boundary conditions
df
dg
ðg�Þ ¼ 1;

d2f
dg2 ðg�Þ ¼ �; ð7Þ
where g� is the unknown free boundary and 0 6 �� 1 is a continuation parameter, see [15] for details. For a recent survey
on this topic see [21].

For the sake of simplicity we will not use the free boundary approach here, but following Töpfer, we perform some com-
putational tests in order to find a suitable value for the truncated boundary.

2.4. Numerical results

Fig. 2 shows a sample numerical computation for the ITM defined above. We used a variable step-size classical order-four
Runge-Kutta method, implemented in order to maintain a local error of the order of 10�6. Moreover, the calculation were
performed in the starred variables with a first time step equal to 0.1 and g�1 ¼ 7:25. The asymptotic value of interest was
found to be
df �

dg�
ð1Þ � 2:085409:
This value can be used in Eq. (5) to get
d2f
dg2 ð0Þ � 0:332057:
Blasius solution, displayed on Fig. 2, was found by rescaling.
3. The iterative transformation method

The applicability of a non-ITM to the Blasius problem is a consequence of its partial invariance with respect to the trans-
formation (4); the asymptotic boundary condition is not invariant. Several problems in boundary-layer theory lack this kind
of invariance and cannot be solved by non-ITMs. To overcome this drawback, we can modify the problem under study by
introducing a numerical parameter h, and require the invariance of the modified problem with respect to an extended scaling
group involving h, see [18] for details.
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An ITM can be defined as follows:

1. The original BVP is embedded into a modified problem involving the numerical parameter h, so that it is ensured the
invariance of the modified problem with respect to an extended scaling group involving h.
2. By starting with suitable values of h�0 and h�1 a root-finder method is used to define a sequence h�j , for j ¼ 2;3; . . .. At each
iteration the group parameter k is obtained by solving an IVP numerically. A related sequence Cðh�j Þ, for j ¼ 0;1;2; . . ., can
be defined by the equation
Cðh�Þ ¼ h� 1; ð8Þ
where Cð�Þ is defined implicitly by the solution of an IVP written in the starred variables and as a consequence
h ¼ hðh�Þ.

3. Suitable termination criteria have to be used to verify whether Cðh�j Þ ! 0 as .j!1.

4. The solution of the original problem can be obtained by rescaling to h ¼ 1.

By defining an ITM the existence and uniqueness question can be reduced to finding the number of real zeros of the trans-
formation function Cð�Þ. This result can be stated as follows.

Theorem 1. Let us assume that IVPs used to define the transformation function are well posed. Then, the considered BVP has a
unique solution if and only if the transformation function has a unique real zero; nonexistence (nonuniqueness) of the solution is
equivalent to nonexistence of real zeros (existence of more than one real zero) of Cð�Þ.

The underlying idea of the proof of this theorem is that there exists a one-to-one and onto correspondence between the
set of solutions of the BVP and the set of real zeros of the transformation function, see [18]. This theorem is applied in the
next section.
4. Variants of the Blasius problem

In this section we report on extensions of the Blasius problem and the related numerical approximation. The results re-
ported in this section were found by the ODE113 solver, from the MATLAB ODE suite written by Samphine and Reichelt [37],
with the accuracy and adaptivity parameters defined by default.

4.1. Moving surfaces

Klemp and Acrivos [28] were the first to define the similarity model of a boundary-layer problem over moving surfaces.
For this model the Blasius equation has to be considered along with the usual asymptotic boundary condition at infinity, and
the following non-homogeneous boundary conditions at g ¼ 0
f ð0Þ ¼ 0;
df
dg
ð0Þ ¼ �P; ð9Þ
where P is the ratio of the plate velocity to the free stream velocity. Klemp and Acrivos studied the effect of the parameter P
on the boundary-layer thickness. For P > 0, two solutions exist only for P less than a critical value Pc , as shown numerically
by Hussaini and Lakin [26]. These authors found a numerical value of Pc equal to 0.3541. Hussaini et al. [27] proved the non-
uniqueness and analyticity of solutions for P 6 Pc , and derived the upper bound 0.46824 for Pc .

More recently, a modified Blasius equation, taking into account the effect of P on the boundary-layer thickness, has been
introduced by Allan [1]. Moreover, Allan and Syam [2], using an homotopy analysis method, defined an implicit relation be-
tween the wall shear stress and the moving wall parameter. The study of these relation shows that two solutions exist when
P 6 Pc � 0:354 . . ., one solution exists for P ¼ Pc and no solution exists for P > Pc.

We have used the ITM in order to investigate the existence and uniqueness question for the Blasius model on a moving
plate. For the modified problem we defined the boundary condition
df
dg
ð0Þ ¼ �h P
and used the extended scaling group
f � ¼ kf ; g� ¼ k�1g; h� ¼ k2h: ð10Þ
so that k is defined by
k ¼ df �

dg�
ð1Þ

� �1=2

: ð11Þ
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Let us discuss here three specific test cases. First, we consider the case P ¼ 0:25, and we report, in Table 1, the related
numerical results found by the ITM. In this case Cð�Þ has two different zeros. Fig. 3 shows the two corresponding solutions.
Fig. 3. Blasius problem with moving plate boundary conditions. The two different solutions for P ¼ 0:25.

Table 1
Fluid flow on a moving plate: numerical results by the ITM.

h� Cðh�Þ h� Cðh�Þ

1 �0.528765 10 �0.008382
3 0.198514 3 0.198514
2.454091 0.045354 9.716410 0.016266
2.339221 0.008091 9.903562 �1:52� 10�4

2.319037 0.001371 9.901831 �2:96� 10�6

2.315626 2:21� 10�4 9.901798 �5:79� 10�8

2.315076 3:87� 10�5 – –

2.314979 6:78� 10�6 – –

2.314963 1:19� 10�6 – –

2.314960 2:08� 10�7 – –
df
dg ð0Þ d2 f

dg2 ð0Þ
df
dg ð0Þ d2 f

dg2 ð0Þ
�0.25 0.283928 �0.25 0.032094
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It is evident, from the two frames of this figure, that the truncated boundary approach has to be supplemented by some
numerical experiments, and this is more relevant in the case of nonuniqueness of solution. In fact, by setting g1 ¼ 10, we
miss the solution shown in the bottom frame of Fig. 3.

As a second test case, by setting P ¼ 0:4 we find that Cð�Þ has always the same negative sign, so that no solution is avail-
able for such a case. Finally, by considering the case P ¼ Pc ¼ 0:3541 the ITM provided d2 f

dg2 ð0Þ � 0:148850. The results ob-
tained by the ITM in all the above cases are in agreement with the results by Hussaini and Lakin [26] and Allan and
Syam [2]. In particular, the behaviour of Cð�Þ in the second test case shows that the upper bound for Pc found by Hussaini
et al. [27] is quite inaccurate.

For the ITM we used the Regula Falsi method as a root-finder, bracketing out the zeros of the transformation function Cð�Þ,
along with a convergence criterion given by the inequality jCð�Þj < 10�6.
4.2. Slip flow condition

We consider now the case of a rarefied flow where the no-slip condition at the wall, considered in the previous section,
must be replaced by a slip-flow condition, see for instance Gad-el-Hak [12]. For an isothermal wall, the slip condition can be
defined as
Table 2
Slip bou

P�

0
0.1
0.5
1
5

10
20
25
vðy;0Þ ¼ 2� r
r

‘
@v
@z
ðy;0Þ;
where ‘ is the mean free path, and r is the tangential momentum accommodation coefficient. Within a similarity transfor-
mation this slip boundary condition becomes
df
dg
ð0Þ ¼ P

d2f
dg2 ð0Þ;
where P is a non-dimensional parameter, that takes into account the behaviour at the surface, defined by
P ¼ 2� r
r Kn Re y1=2;
where Kn and Re are the Knudsen and Reynolds numbers based on y.
For the Blasius problem with slip condition we implemented both an extension of the non-ITM and the ITM. In order to

apply the non-ITM we consider P as a parameter involved in the scaling invariance, i.e., we defined the extended scaling
group
f � ¼ kf ; g� ¼ k�1g; P� ¼ k�1P: ð12Þ
As far as the application of the ITM is concerned, we used a modified problem with the boundary condition
df
dg
ð0Þ ¼ h P

d2f
dg2 ð0Þ;
and the extended scaling group
f � ¼ kf ; g� ¼ k�1g; h� ¼ k�1h: ð13Þ
Henceforth, in both cases k is defined, once again, by Eq. (11).
Sample numerical results are reported in Tables 2 and 3. The results listed in the last two columns of Tables 2 and 3 can be

compared with similar results, obtained via a shooting method, shown in Fig. 1 of the proceedings report by Martin and Boyd
[31]. It is clear that our non-ITM would be faster and easier to implement than any iterative algorithm.

As far as the non-ITM is concerned, we set a value of P� and get the numerical solution of the problem for a different value
of P. As an example, Fig. 4 shows a sample numerical integration for P ¼ 1:562257. Note that the solution of the Blasius prob-
ndary condition: non-iterative numerical results.

df �

dg� ð1Þ
df
dg ð0Þ d2 f

dg2 ð0Þ P

2.085393 0 0.332061 0
2.090453 0.047836 0.330856 0.144584
2.191907 0.228112 0.308153 0.740255
2.440648 0.409727 0.262266 1.562257
5.771518 0.866323 0.072122 12.011992

10.554805 0.947436 0.029162 32.488159
20.394883 0.980638 0.010857 90.321389
25.353618 0.986053 0.007833 125.880941



Table 3
Slip boundary condition: numerical results by the ITM.

df �

dg� ð1Þ
df
dg ð0Þ d2 f

dg2 ð0Þ P

2.085393 0 0.332061 0
2.087710 0.033151 0.331509 0.1
2.262516 0.293841 0.293841 1
3.644351 0.718686 0.143737 5
5.203210 0.842545 0.084255 10

13.894469 0.965399 0.019308 50
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2

2.5

Fig. 4. Blasius problem with slip condition. Numerical solution by a non-ITM with P� ¼ 1 and P ¼ 1:562257.
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lem with slip boundary condition was computed by rescaling. If we need the solution for a specific value of P, then we can
apply interpolation techniques to the results of Table 2 or we can use the ITM as was done for all the values of P listed in
Table 3. For the ITM, we always used h�0 ¼ 0:1 and h�1 ¼ 1 but for the case P ¼ 50 where, in order to speed up the convergence,
we set h�1 ¼ 0:5. For the sake of brevity, we omit to report the iterations related to the results listed in Table 3. However, by
setting again jCð�Þj < 10�6, as a convergence criterion, the Regula Falsi method converged within 8 iterations in all cases.

5. Conclusions

In this paper, we have shown how the original treatment of the Blasius problem due to Töpfer can be extended to more
complex problems of boundary-layer theory. As pointed out by NA [33, Chapters 7–9], usually a given, even simple, exten-
sion of the Blasius problem cannot be solved by Töpfer algorithm. Therefore, in order to extend the applicability of this non-
ITM an iterative version has been developed in [16–19]. Here, we focused our attention to two problems of relevant interest:
moving surfaces and slip boundary condition. For moving surfaces the ITM was able to deal with multiple solutions, whereas
in the case of slip condition both an extended non-ITM and the ITM provided reliable numerical results, cf. Fig. 1 in [31].

The ideas outlined in this paper can be applied to other problems of boundary-layer theory as well. As an example, let us
consider the Falkner–Skan equation with relevant boundary conditions:
d3f
dg3 þ f

d2f
dg2 þ b 1� df

dg

� �2
" #

¼ 0

f ð0Þ ¼ df
dg
ð0Þ ¼ 0;

df
dg
ð1Þ ¼ 1;

ð14Þ
where f and g are appropriate similarity variables and b is a parameter. This problem describes the flow of a fluid past a
wedge, see Falkner and Skan [13]. The application of the ITM to (14) has been reported in [16] but only in the simple cases
where b ¼ 1=2 or b ¼ 1. It is well known that the case b > 1 is more interesting, because the Falkner–Skan model loses the
uniqueness property and a hierarchy of solution with reversed flow exists. In fact, for b > 1 Craven and Peletier [11] have
calculated solutions for which df

dg < 0 for some value of g.
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The existence and uniqueness question for the problem (14) is really a complex matter. Assuming that b > 0, under the
restriction 0 < df

dg < 1, it has been proved by Hartree [23] and Stewartson [38] that the problem (14) has an unique solution,
whose first derivative tends to one exponentially. Coppel [8] and Craven and Peletier [10] have proved that the above restric-
tion on the first derivative can be omitted when 0 6 b 6 1. The case when b < 0 is more complicated, but its treatment here
will be out of scope; the interested reader may have a look at the paper of Veldman and van de Vooren [40].
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